File size: 3,437 Bytes
565a12d f82e566 565a12d f971ac5 6ca4994 f971ac5 56eeaea f971ac5 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 56eeaea ab6ac75 67d49fc ab6ac75 67d49fc ab6ac75 56eeaea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B
pipeline_tag: text-generation
tags:
- not-for-all-audiences
language:
- en
library_name: transformers
---
## Model Description
Model created by analyzing and selecting the optimal layers from other Qwen2.5-7B models based on their dimensional utilization efficiency, measured by the Normalized Effective Rank (NER). Computed like:
Singular Value Decomposition:
- Input: Weight matrix A ∈ R^(m×n) # m = number of output features, n = number of input features
- Compute singular values σᵢ where σᵢ ≥ 0 # σᵢ represents the importance of each dimension
- Filter values above numerical threshold (>1e-12) # removes numerical noise from computation
Distribution Normalization:
- Sum all singular values: S = Σσᵢ # S acts as normalization factor
- Create probability distribution: pᵢ = σᵢ/S # converts singular values to probabilities summing to 1
Entropy Calculation:
- Compute Shannon entropy: H = -Σ(pᵢ * log₂(pᵢ)) # measures information content of distribution
- Calculate maximum possible entropy: H_max = log₂(n) # n = number of singular values
where n is the number of singular values # maximum entropy occurs when all dimensions contribute equally
Normalization:
- Final NER score = H/H_max # normalizes score to [0,1] range
- Results in value between 0 and 1 # 0 = single dimension dominance, 1 = perfect dimensional utilization
- Higher scores indicate more uniform dimensional utilization
## Creating Composite Model
Code here: https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0/blob/main/ner_merge.py
Layer Analysis:
- Download base and fine-tuned models from Hugging Face Hub
- Calculate Normalized Effective Rank (NER) for each layer within each model
Layer Selection:
- Identify common layer structures across models
- Define model and layer name pairs that have highest NER for each layer based on their NER scores
Model Composition:
- Incrementally build a composite model using layer with highest NER from model pool.
Output Generation:
- Save merge reports documenting layer sources
- Copy config and tokenizer files from base model
- Save the composite model with complete weights # model ready to use
Configfile:
base_model: "Qwen/Qwen2.5-7B"
fine_tuned_models: # uncomment the models you want to merge
#- "Qwen/Qwen2.5-7B"
#- "Qwen/Qwen2.5-7B-Instruct"
#- "FourOhFour/Vapor_v2_7B"
#- "Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2"
#- "happzy2633/qwen2.5-7b-ins-v3"
#- "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2"
#- "HumanLLMs/Humanish-Qwen2.5-7B-Instruct"
#- "Orion-zhen/Qwen2.5-7B-Instruct-Uncensored"
#- "Orion-zhen/Meissa-Qwen2.5-7B-Instruct"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0"
#- "rombodawg/Rombos-LLM-V2.5-Qwen-7b"
#- "Cran-May/T.E-8.1"
#- "thomas-yanxin/XinYuan-Qwen2.5-7B-0917"
#- "beomi/Qwen2.5-7B-Instruct-kowiki-qa"
#- "Orion-zhen/Qwen2.5-7B-Gutenberg-KTO"
#- 'fblgit/cybertron-v4-qw7B-MGS'
#- 'nguyentd/FinancialAdvice-Qwen2.5-7B'
#- "Qwen/Qwen2.5-Coder-7B-Instruct"
#- "Qwen/Qwen2.5-Math-7B-Instruct"
#- "Qwen/Qwen2.5-Coder-7B"
#- "Qwen/Qwen2.5-Math-7B"
#- "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B"
#- "edgerunner-ai/EdgeRunner-Command-Nested"
#- "katanemo/Arch-Function-7B"
models_dir: "./input_models/"
output_dir: "./merged_model/"
metric_dir: "./metrics/" |