--- language: - en license: apache-2.0 library_name: transformers tags: - not-for-all-audiences base_model: - Qwen/Qwen2.5-7B pipeline_tag: text-generation model-index: - name: Qwen2.5-7B-nerd-uncensored-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 76.95 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 34.74 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.15 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.37 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 16.82 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 36.15 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0 name: Open LLM Leaderboard --- ## Model Description Model created by analyzing and selecting the optimal layers from other Qwen2.5-7B models based on their dimensional utilization efficiency, measured by the Normalized Effective Rank (NER). Computed like: - Input: Weight matrix for each model layer - Compute singular values σᵢ where σᵢ ≥ 0 # σᵢ represents the importance of each dimension - Filter values above numerical threshold (>1e-12) - Sum all singular values: S = Σσᵢ # S acts as normalization factor - Create probability distribution: pᵢ = σᵢ/S # converts singular values to probabilities summing to 1 - Compute Shannon entropy: H = -Σ(pᵢ * log₂(pᵢ)) # measures information content - Calculate maximum possible entropy: H_max = log₂(n) - Final NER score = H/H_max # normalizes score to [0,1] range - Results in value between 0 and 1 for each model layer ## Creating Composite Model Code here: https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0/blob/main/ner_merge.py Code functions: - Download selected models from Hugging Face Hub - Calculate Normalized Effective Rank (NER) for each layer within each model - Define model and layer name pairs that have highest NER for each layer based on their NER scores - Incrementally build a composite model using layer with highest NER from model pool - Save merge reports documenting layer sources - Copy config and tokenizer files from base model - Save the composite model with complete weights # model ready to use Configfile: base_model: "Qwen/Qwen2.5-7B" fine_tuned_models: # uncomment the models you want to merge #- "Qwen/Qwen2.5-7B" #- "Qwen/Qwen2.5-7B-Instruct" #- "EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1" #- "FourOhFour/Vapor_v2_7B" #- "Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2" #- "happzy2633/qwen2.5-7b-ins-v3" #- "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2" #- "HumanLLMs/Humanish-Qwen2.5-7B-Instruct" #- "Orion-zhen/Qwen2.5-7B-Instruct-Uncensored" #- "Orion-zhen/Meissa-Qwen2.5-7B-Instruct" #- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v0.9" #- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0" #- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.1" #- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.2" #- "AmberYifan/Qwen2.5-7B-dpo-2k" #- "sethuiyer/Qwen2.5-7B-Anvita" #- "rombodawg/Rombos-LLM-V2.5-Qwen-7b" #- "Cran-May/T.E-8.1" #- "beomi/Qwen2.5-7B-Instruct-kowiki-qa" #- "Orion-zhen/Qwen2.5-7B-Gutenberg-KTO" #- "fblgit/cybertron-v4-qw7B-MGS" #- "nguyentd/FinancialAdvice-Qwen2.5-7B" #- "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B" #- "edgerunner-ai/EdgeRunner-Command-Nested" #- "katanemo/Arch-Function-7B" #- "DeepGlint-AI/llava-mlcd-qwen2.5-7b" #- "mergekit-community/mergekit-slerp-aflqaqy" #- "mergekit-community/mergekit-ties-inxwsfo" #- "Qwen/Qwen2.5-Coder-7B-Instruct" #- "Qwen/Qwen2.5-Math-7B-Instruct" #- "Qwen/Qwen2.5-Coder-7B" #- "Qwen/Qwen2.5-Math-7B" #- "thomas-yanxin/XinYuan-Qwen2.5-7B-0917" #- "jbjeong91/Qwen2.5_7B_IST_StoryGen_vanilla" #- "AmberYifan/Qwen2.5-7B-dpo-2k-hhrlhf" #- "jbjeong91/Qwen2.5_7B_IST_StoryGen_test2" models_dir: "./input_models/" output_dir: "./merged_model/" metric_dir: "./metrics/" # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jeffmeloy__Qwen2.5-7B-nerd-uncensored-v1.0) | Metric |Value| |-------------------|----:| |Avg. |28.36| |IFEval (0-Shot) |76.95| |BBH (3-Shot) |34.74| |MATH Lvl 5 (4-Shot)| 0.15| |GPQA (0-shot) | 5.37| |MuSR (0-shot) |16.82| |MMLU-PRO (5-shot) |36.15|