File size: 3,470 Bytes
dd8aa6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
library_name: transformers
base_model: jeiku/MoEv2
tags:
- axolotl
- generated_from_trainer
datasets:
- FourOhFour/RP_Phase
- jeiku/Writing
model-index:
- name: Aura-MoEv2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: jeiku/MoEv2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: FourOhFour/RP_Phase
type: chat_template
chat_template: chatml
roles_to_train: ["gpt"]
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: turn
- path: jeiku/Writing
type: completion
field: text
chat_template: chatml
shuffle_merged_datasets: true
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./output/out
hub_model_id: jeiku/Aura-MoEv2
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len:
wandb_project: Aura-MoEv2
wandb_entity:
wandb_watch:
wandb_name: Aura-MoEv2
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
```
</details><br>
# Aura-MoEv2
This model is a fine-tuned version of [jeiku/MoEv2](https://huggingface.co/jeiku/MoEv2) on the FourOhFour/RP_Phase and the jeiku/Writing datasets.
It achieves the following results on the evaluation set:
- Loss: 1.7106
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 29.5342 | 0.0038 | 1 | 1.8693 |
| 27.8562 | 0.4990 | 130 | 1.7601 |
| 26.632 | 0.9981 | 260 | 1.6990 |
| 21.9675 | 1.4952 | 390 | 1.7117 |
| 21.648 | 1.9942 | 520 | 1.7106 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
|