--- library_name: transformers base_model: jeiku/MoEv2 tags: - axolotl - generated_from_trainer datasets: - FourOhFour/RP_Phase - jeiku/Writing model-index: - name: Aura-MoEv2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: jeiku/MoEv2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: FourOhFour/RP_Phase type: chat_template chat_template: chatml roles_to_train: ["gpt"] field_messages: conversations message_field_role: from message_field_content: value train_on_eos: turn - path: jeiku/Writing type: completion field: text chat_template: chatml shuffle_merged_datasets: true dataset_prepared_path: val_set_size: 0.01 output_dir: ./output/out hub_model_id: jeiku/Aura-MoEv2 hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: wandb_project: Aura-MoEv2 wandb_entity: wandb_watch: wandb_name: Aura-MoEv2 wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 2 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.05 fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

# Aura-MoEv2 This model is a fine-tuned version of [jeiku/MoEv2](https://huggingface.co/jeiku/MoEv2) on the FourOhFour/RP_Phase and the jeiku/Writing datasets. It achieves the following results on the evaluation set: - Loss: 1.7106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 29.5342 | 0.0038 | 1 | 1.8693 | | 27.8562 | 0.4990 | 130 | 1.7601 | | 26.632 | 0.9981 | 260 | 1.6990 | | 21.9675 | 1.4952 | 390 | 1.7117 | | 21.648 | 1.9942 | 520 | 1.7106 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0