jenya-g commited on
Commit
7baac40
1 Parent(s): 0e3e078
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 271.36 +/- 14.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bef5c0ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bef5c0d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bef5c0dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bef5c0e50>", "_build": "<function ActorCriticPolicy._build at 0x7f0bef5c0ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0bef5c0f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bef5c5040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0bef5c50d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bef5c5160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bef5c51f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bef5c5280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0bef5bd3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671367709980130580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYy8DvDeWe636gDPEFT/DVEb6w6RR34NAAAgD8AAIA/mo+ZvFwfajnY+H+7qzk4tj3i5TtSeZk6AACAPwAAgD9mfkG9XLtiupuP07mVOW602xQ6u8J09jgAAIA/AACAP82ZgTyus5C69lG+OzWv3zWoSQE74N/ANAAAgD8AAIA/zQ6QPVz7c7oWxjG4hgpGs0IW+Dm29E83AACAPwAAgD+aWNs9jwYxukceSDthG3k3nLQguLbfJjYAAAAAAACAP2bUIryRY/Y9fhwQPlEnZr47LR48QXuHPQAAAAAAAAAAANAfvexppLnATjG45oX9suN2ELr1f043AACAPwAAgD8zF3o8XMNvuhBlILtMosU3JtRsOmPGyjkAAIA/AACAP5qJ3zqO2IE+ptp0PT76gr5xlJA88ylVvAAAAAAAAAAA5l5KvdcEO7tyTYU8Oee1PNOyNLyyd5w9AACAPwAAgD/Nfk68e8KVulUMpbpc3pU1GBV3OnzcvjkAAIA/AACAP01UKr2ukbW6X2MUuokU+zOkttM3thEpOQAAgD8AAIA/M+8UPI9OSbpGO6K725tVNkipKjluM8W1AACAPwAAgD/Nij88uhMlPyO98rzJfaK+wr+yvPleFb0AAAAAAAAAAM1Co7zDsUq63XdAO7P+WjVj0Fe3+j9gugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknajj/k8YkCUhpRSlIwBbJRN6AOMAXSUR0CceHXSjQAudX2UKGgGaAloD0MIgA9euzT7aECUhpRSlGgVTegDaBZHQJx5fyrgflp1fZQoaAZoCWgPQwgxBtZxfLZlQJSGlFKUaBVN6ANoFkdAnH8w7HQyAXV9lChoBmgJaA9DCP5jIToEomZAlIaUUpRoFU3oA2gWR0CcgESw4bS7dX2UKGgGaAloD0MIkUPEzanbY0CUhpRSlGgVTegDaBZHQJyJThaTwDx1fZQoaAZoCWgPQwgW+8vuyUBoQJSGlFKUaBVN6ANoFkdAnJBGlhw2l3V9lChoBmgJaA9DCPiKbr2mMGFAlIaUUpRoFU3oA2gWR0CckbCIk7fYdX2UKGgGaAloD0MIqTKMu8ElYECUhpRSlGgVTegDaBZHQJyTafHxSYR1fZQoaAZoCWgPQwgYXHNHf29jQJSGlFKUaBVN6ANoFkdAnJPQMYuTR3V9lChoBmgJaA9DCE0vMZZpU2ZAlIaUUpRoFU3oA2gWR0CclMK+zt1IdX2UKGgGaAloD0MI2T7kLdd9Y0CUhpRSlGgVTegDaBZHQJyWSKVII4V1fZQoaAZoCWgPQwhGJ0ut99hgQJSGlFKUaBVN6ANoFkdAnJZf/3nIQ3V9lChoBmgJaA9DCDeMguDxyV1AlIaUUpRoFU3oA2gWR0Ccmz6ySmqHdX2UKGgGaAloD0MIMNl4sEUAY0CUhpRSlGgVTegDaBZHQJyeb9pAUtZ1fZQoaAZoCWgPQwhRZ+4hYb9iQJSGlFKUaBVN6ANoFkdAnLS89B8hLXV9lChoBmgJaA9DCEVLHk/L5mVAlIaUUpRoFU3oA2gWR0CcwBb+98JEdX2UKGgGaAloD0MIN1X3yOZ1cUCUhpRSlGgVTRQDaBZHQJzBJ7sv7Fd1fZQoaAZoCWgPQwh1WUxsvq5kQJSGlFKUaBVN6ANoFkdAnMWSU5dWyXV9lChoBmgJaA9DCN1dZ0N+eGBAlIaUUpRoFU3oA2gWR0Ccxnx8UmD2dX2UKGgGaAloD0MITvIjfsWwYUCUhpRSlGgVTegDaBZHQJzLYFJQLux1fZQoaAZoCWgPQwicGmg+Z/VhQJSGlFKUaBVN6ANoFkdAnNT5xNqQBHV9lChoBmgJaA9DCDdPdchNbmFAlIaUUpRoFU3oA2gWR0Cc287l7tzCdX2UKGgGaAloD0MIza/mAEHdYUCUhpRSlGgVTegDaBZHQJzdB2W6bvx1fZQoaAZoCWgPQwhMUMO3MEhhQJSGlFKUaBVN6ANoFkdAnN6jQ/oq1HV9lChoBmgJaA9DCH506srn/WZAlIaUUpRoFU3oA2gWR0Cc3vbJOnEVdX2UKGgGaAloD0MIFTYDXJCqZkCUhpRSlGgVTegDaBZHQJzf1TisGPh1fZQoaAZoCWgPQwgz+zxG+axgQJSGlFKUaBVN6ANoFkdAnOFL7fpD/nV9lChoBmgJaA9DCBhCzvt/jGBAlIaUUpRoFU3oA2gWR0Cc4WapPykLdX2UKGgGaAloD0MI078klamxZUCUhpRSlGgVTegDaBZHQJzl8xubZvl1fZQoaAZoCWgPQwgdVyO7UudoQJSGlFKUaBVN6ANoFkdAnOkpZr56+nV9lChoBmgJaA9DCDcZVYbxSmhAlIaUUpRoFU3oA2gWR0Cc6uDO1OTJdX2UKGgGaAloD0MIRxyygXR9ZECUhpRSlGgVTegDaBZHQJ0LcSJ0nw51fZQoaAZoCWgPQwhX7C+7p9BhQJSGlFKUaBVN6ANoFkdAnQyERradtnV9lChoBmgJaA9DCMWsF0M5ZmdAlIaUUpRoFU3oA2gWR0CdEV+gDifhdX2UKGgGaAloD0MIdXXHYhusYUCUhpRSlGgVTegDaBZHQJ0SXu0CzTp1fZQoaAZoCWgPQwjNO07RkXpQQJSGlFKUaBVLtmgWR0CdF1ThHbypdX2UKGgGaAloD0MIWFhwP+CAZECUhpRSlGgVTegDaBZHQJ0YDcwg1WN1fZQoaAZoCWgPQwgZPbfQFTdmQJSGlFKUaBVN6ANoFkdAnSHZz1bqyHV9lChoBmgJaA9DCMkcy7vqzmRAlIaUUpRoFU3oA2gWR0CdKHe18b71dX2UKGgGaAloD0MIfCjRksejYUCUhpRSlGgVTegDaBZHQJ0pvwSamXR1fZQoaAZoCWgPQwhhxD4BlDJkQJSGlFKUaBVN6ANoFkdAnStrvsqrinV9lChoBmgJaA9DCPc+VYWGbWNAlIaUUpRoFU3oA2gWR0CdK8tPHktFdX2UKGgGaAloD0MIu37BbtjhZ0CUhpRSlGgVTegDaBZHQJ0suWjXWe91fZQoaAZoCWgPQwgbECGunF1FQJSGlFKUaBVLwWgWR0CdLPzk6tDEdX2UKGgGaAloD0MI/N8RFar5aECUhpRSlGgVTegDaBZHQJ0uJ9H+ZPV1fZQoaAZoCWgPQwih15/EZ95jQJSGlFKUaBVN6ANoFkdAnS5IiX6ZY3V9lChoBmgJaA9DCGzQl97+bGBAlIaUUpRoFU3oA2gWR0CdMw6dDpkgdX2UKGgGaAloD0MIYTdsW5SpT0CUhpRSlGgVS7FoFkdAnTVmTTvy9XV9lChoBmgJaA9DCLtIoSz8i2FAlIaUUpRoFU3oA2gWR0CdNkhy8zyjdX2UKGgGaAloD0MI8X9HVKiIYkCUhpRSlGgVTegDaBZHQJ04GZE2Hcl1fZQoaAZoCWgPQwir7LsieOFjQJSGlFKUaBVN6ANoFkdAnVkeejEehnV9lChoBmgJaA9DCORKPQvCd2ZAlIaUUpRoFU3oA2gWR0CdX6nIhhYvdX2UKGgGaAloD0MIJCnpYehWYECUhpRSlGgVTegDaBZHQJ1gyMo+fRN1fZQoaAZoCWgPQwjT+IVXkgwlQJSGlFKUaBVLxWgWR0CdZjA44p+ddX2UKGgGaAloD0MI56p5jkhHZUCUhpRSlGgVTegDaBZHQJ1mXN2TxG51fZQoaAZoCWgPQwhb07zjFMhfQJSGlFKUaBVN6ANoFkdAnWchun/DL3V9lChoBmgJaA9DCESGVbyRBUtAlIaUUpRoFUvKaBZHQJ1y1Z+x4Y91fZQoaAZoCWgPQwiKyLCKtxthQJSGlFKUaBVN6ANoFkdAnXmasySFG3V9lChoBmgJaA9DCJktWRVhhGVAlIaUUpRoFU3oA2gWR0Cdex1RLsa9dX2UKGgGaAloD0MImQ6dnneaWUCUhpRSlGgVTegDaBZHQJ18/idat9x1fZQoaAZoCWgPQwitM74vLlpnQJSGlFKUaBVN6ANoFkdAnX1q6asp5XV9lChoBmgJaA9DCOUpq+n6wWRAlIaUUpRoFU3oA2gWR0CdfmylN1yOdX2UKGgGaAloD0MI6gd1kcIaZkCUhpRSlGgVTegDaBZHQJ1/8ZAIIGB1fZQoaAZoCWgPQwjLvcCs0EtlQJSGlFKUaBVN6ANoFkdAnYAKqKgqVnV9lChoBmgJaA9DCPW4b7XOyGNAlIaUUpRoFU3oA2gWR0CdhXJUHY6GdX2UKGgGaAloD0MIl1XYDHDSZUCUhpRSlGgVTegDaBZHQJ2IC19fCyh1fZQoaAZoCWgPQwjpgY/BioZnQJSGlFKUaBVN6ANoFkdAnYkXOGCZnnV9lChoBmgJaA9DCG8u/rani2BAlIaUUpRoFU3oA2gWR0Cdit/CIk7fdX2UKGgGaAloD0MIYLAbtq0ZY0CUhpRSlGgVTegDaBZHQJ2z9lWfbsZ1fZQoaAZoCWgPQwhffNEer11kQJSGlFKUaBVN6ANoFkdAnbU9eIEbHnV9lChoBmgJaA9DCOlfksqU0GBAlIaUUpRoFU3oA2gWR0CduzmLLpzLdX2UKGgGaAloD0MIONibGBKNZkCUhpRSlGgVTegDaBZHQJ28Q1Nxlxx1fZQoaAZoCWgPQwhcWDfenWtmQJSGlFKUaBVN6ANoFkdAnclAGW2PUHV9lChoBmgJaA9DCP1nzY8/W2VAlIaUUpRoFU3oA2gWR0Cdz6LsrupkdX2UKGgGaAloD0MI5DCYv8I9ZECUhpRSlGgVTegDaBZHQJ3RH5dnkDJ1fZQoaAZoCWgPQwjc8/xpo/VfQJSGlFKUaBVN6ANoFkdAndL+fmLcbnV9lChoBmgJaA9DCBFTIoleCWVAlIaUUpRoFU3oA2gWR0Cd02aG5+YudX2UKGgGaAloD0MIh97i4T15Y0CUhpRSlGgVTegDaBZHQJ3UZ2jfvWp1fZQoaAZoCWgPQwj/If32dedlQJSGlFKUaBVN6ANoFkdAndYmTot+TnV9lChoBmgJaA9DCCOHiJtTuWNAlIaUUpRoFU3oA2gWR0Cd1kAy2x6fdX2UKGgGaAloD0MIRS3NrRCTX0CUhpRSlGgVTegDaBZHQJ3bbJYDDCR1fZQoaAZoCWgPQwgbaD7nbolhQJSGlFKUaBVN6ANoFkdAnd4SLIgeR3V9lChoBmgJaA9DCPZcpibBnGJAlIaUUpRoFU3oA2gWR0Cd3wyXUpd9dX2UKGgGaAloD0MIC0Pk9HV0YUCUhpRSlGgVTegDaBZHQJ3gr+T/yXl1fZQoaAZoCWgPQwjU78LW7KRlQJSGlFKUaBVN6ANoFkdAngdzkyULUnV9lChoBmgJaA9DCLw7MlabCmdAlIaUUpRoFU3oA2gWR0CeCIe9Ba9sdX2UKGgGaAloD0MIuoEC7+SOZkCUhpRSlGgVTegDaBZHQJ4Niwqy4Wl1fZQoaAZoCWgPQwiR0JZzKZBkQJSGlFKUaBVN6ANoFkdAng5a2WpqAXV9lChoBmgJaA9DCFcHQNxVtGVAlIaUUpRoFU3oA2gWR0CeGREr5IpZdX2UKGgGaAloD0MIWFaalALYYkCUhpRSlGgVTegDaBZHQJ4fAeZG8VZ1fZQoaAZoCWgPQwih1jTvuF5mQJSGlFKUaBVN6ANoFkdAniBjg2qDLHV9lChoBmgJaA9DCH/ZPXlYwWZAlIaUUpRoFU3oA2gWR0CeIi/etSyddX2UKGgGaAloD0MIqIqp9BP2YUCUhpRSlGgVTegDaBZHQJ4ildzGPxR1fZQoaAZoCWgPQwixGktYG8pkQJSGlFKUaBVN6ANoFkdAniOwxFiKBXV9lChoBmgJaA9DCK2jqgmi/WdAlIaUUpRoFU3oA2gWR0CeJXmZ3LV4dX2UKGgGaAloD0MIfxe2ZqssY0CUhpRSlGgVTegDaBZHQJ4lmLm6oVF1fZQoaAZoCWgPQwiaYDjXMAZmQJSGlFKUaBVN6ANoFkdAnir8otthu3V9lChoBmgJaA9DCEgyq3e4ZGJAlIaUUpRoFU3oA2gWR0CeLbnfVI7OdX2UKGgGaAloD0MId2ouNxjqY0CUhpRSlGgVTegDaBZHQJ4utJFspG51fZQoaAZoCWgPQwifdY2WA3JkQJSGlFKUaBVN6ANoFkdAnjCW8IzFdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
my_first_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39559a8a73226819bcb1754f44d485ac63ec482b60eac297d93cbe364982219c
3
+ size 147342
my_first_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
my_first_model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0bef5c0ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0bef5c0d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0bef5c0dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0bef5c0e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0bef5c0ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0bef5c0f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0bef5c5040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0bef5c50d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0bef5c5160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0bef5c51f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0bef5c5280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0bef5bd3f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671367709980130580,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYy8DvDeWe636gDPEFT/DVEb6w6RR34NAAAgD8AAIA/mo+ZvFwfajnY+H+7qzk4tj3i5TtSeZk6AACAPwAAgD9mfkG9XLtiupuP07mVOW602xQ6u8J09jgAAIA/AACAP82ZgTyus5C69lG+OzWv3zWoSQE74N/ANAAAgD8AAIA/zQ6QPVz7c7oWxjG4hgpGs0IW+Dm29E83AACAPwAAgD+aWNs9jwYxukceSDthG3k3nLQguLbfJjYAAAAAAACAP2bUIryRY/Y9fhwQPlEnZr47LR48QXuHPQAAAAAAAAAAANAfvexppLnATjG45oX9suN2ELr1f043AACAPwAAgD8zF3o8XMNvuhBlILtMosU3JtRsOmPGyjkAAIA/AACAP5qJ3zqO2IE+ptp0PT76gr5xlJA88ylVvAAAAAAAAAAA5l5KvdcEO7tyTYU8Oee1PNOyNLyyd5w9AACAPwAAgD/Nfk68e8KVulUMpbpc3pU1GBV3OnzcvjkAAIA/AACAP01UKr2ukbW6X2MUuokU+zOkttM3thEpOQAAgD8AAIA/M+8UPI9OSbpGO6K725tVNkipKjluM8W1AACAPwAAgD/Nij88uhMlPyO98rzJfaK+wr+yvPleFb0AAAAAAAAAAM1Co7zDsUq63XdAO7P+WjVj0Fe3+j9gugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknajj/k8YkCUhpRSlIwBbJRN6AOMAXSUR0CceHXSjQAudX2UKGgGaAloD0MIgA9euzT7aECUhpRSlGgVTegDaBZHQJx5fyrgflp1fZQoaAZoCWgPQwgxBtZxfLZlQJSGlFKUaBVN6ANoFkdAnH8w7HQyAXV9lChoBmgJaA9DCP5jIToEomZAlIaUUpRoFU3oA2gWR0CcgESw4bS7dX2UKGgGaAloD0MIkUPEzanbY0CUhpRSlGgVTegDaBZHQJyJThaTwDx1fZQoaAZoCWgPQwgW+8vuyUBoQJSGlFKUaBVN6ANoFkdAnJBGlhw2l3V9lChoBmgJaA9DCPiKbr2mMGFAlIaUUpRoFU3oA2gWR0CckbCIk7fYdX2UKGgGaAloD0MIqTKMu8ElYECUhpRSlGgVTegDaBZHQJyTafHxSYR1fZQoaAZoCWgPQwgYXHNHf29jQJSGlFKUaBVN6ANoFkdAnJPQMYuTR3V9lChoBmgJaA9DCE0vMZZpU2ZAlIaUUpRoFU3oA2gWR0CclMK+zt1IdX2UKGgGaAloD0MI2T7kLdd9Y0CUhpRSlGgVTegDaBZHQJyWSKVII4V1fZQoaAZoCWgPQwhGJ0ut99hgQJSGlFKUaBVN6ANoFkdAnJZf/3nIQ3V9lChoBmgJaA9DCDeMguDxyV1AlIaUUpRoFU3oA2gWR0Ccmz6ySmqHdX2UKGgGaAloD0MIMNl4sEUAY0CUhpRSlGgVTegDaBZHQJyeb9pAUtZ1fZQoaAZoCWgPQwhRZ+4hYb9iQJSGlFKUaBVN6ANoFkdAnLS89B8hLXV9lChoBmgJaA9DCEVLHk/L5mVAlIaUUpRoFU3oA2gWR0CcwBb+98JEdX2UKGgGaAloD0MIN1X3yOZ1cUCUhpRSlGgVTRQDaBZHQJzBJ7sv7Fd1fZQoaAZoCWgPQwh1WUxsvq5kQJSGlFKUaBVN6ANoFkdAnMWSU5dWyXV9lChoBmgJaA9DCN1dZ0N+eGBAlIaUUpRoFU3oA2gWR0Ccxnx8UmD2dX2UKGgGaAloD0MITvIjfsWwYUCUhpRSlGgVTegDaBZHQJzLYFJQLux1fZQoaAZoCWgPQwicGmg+Z/VhQJSGlFKUaBVN6ANoFkdAnNT5xNqQBHV9lChoBmgJaA9DCDdPdchNbmFAlIaUUpRoFU3oA2gWR0Cc287l7tzCdX2UKGgGaAloD0MIza/mAEHdYUCUhpRSlGgVTegDaBZHQJzdB2W6bvx1fZQoaAZoCWgPQwhMUMO3MEhhQJSGlFKUaBVN6ANoFkdAnN6jQ/oq1HV9lChoBmgJaA9DCH506srn/WZAlIaUUpRoFU3oA2gWR0Cc3vbJOnEVdX2UKGgGaAloD0MIFTYDXJCqZkCUhpRSlGgVTegDaBZHQJzf1TisGPh1fZQoaAZoCWgPQwgz+zxG+axgQJSGlFKUaBVN6ANoFkdAnOFL7fpD/nV9lChoBmgJaA9DCBhCzvt/jGBAlIaUUpRoFU3oA2gWR0Cc4WapPykLdX2UKGgGaAloD0MI078klamxZUCUhpRSlGgVTegDaBZHQJzl8xubZvl1fZQoaAZoCWgPQwgdVyO7UudoQJSGlFKUaBVN6ANoFkdAnOkpZr56+nV9lChoBmgJaA9DCDcZVYbxSmhAlIaUUpRoFU3oA2gWR0Cc6uDO1OTJdX2UKGgGaAloD0MIRxyygXR9ZECUhpRSlGgVTegDaBZHQJ0LcSJ0nw51fZQoaAZoCWgPQwhX7C+7p9BhQJSGlFKUaBVN6ANoFkdAnQyERradtnV9lChoBmgJaA9DCMWsF0M5ZmdAlIaUUpRoFU3oA2gWR0CdEV+gDifhdX2UKGgGaAloD0MIdXXHYhusYUCUhpRSlGgVTegDaBZHQJ0SXu0CzTp1fZQoaAZoCWgPQwjNO07RkXpQQJSGlFKUaBVLtmgWR0CdF1ThHbypdX2UKGgGaAloD0MIWFhwP+CAZECUhpRSlGgVTegDaBZHQJ0YDcwg1WN1fZQoaAZoCWgPQwgZPbfQFTdmQJSGlFKUaBVN6ANoFkdAnSHZz1bqyHV9lChoBmgJaA9DCMkcy7vqzmRAlIaUUpRoFU3oA2gWR0CdKHe18b71dX2UKGgGaAloD0MIfCjRksejYUCUhpRSlGgVTegDaBZHQJ0pvwSamXR1fZQoaAZoCWgPQwhhxD4BlDJkQJSGlFKUaBVN6ANoFkdAnStrvsqrinV9lChoBmgJaA9DCPc+VYWGbWNAlIaUUpRoFU3oA2gWR0CdK8tPHktFdX2UKGgGaAloD0MIu37BbtjhZ0CUhpRSlGgVTegDaBZHQJ0suWjXWe91fZQoaAZoCWgPQwgbECGunF1FQJSGlFKUaBVLwWgWR0CdLPzk6tDEdX2UKGgGaAloD0MI/N8RFar5aECUhpRSlGgVTegDaBZHQJ0uJ9H+ZPV1fZQoaAZoCWgPQwih15/EZ95jQJSGlFKUaBVN6ANoFkdAnS5IiX6ZY3V9lChoBmgJaA9DCGzQl97+bGBAlIaUUpRoFU3oA2gWR0CdMw6dDpkgdX2UKGgGaAloD0MIYTdsW5SpT0CUhpRSlGgVS7FoFkdAnTVmTTvy9XV9lChoBmgJaA9DCLtIoSz8i2FAlIaUUpRoFU3oA2gWR0CdNkhy8zyjdX2UKGgGaAloD0MI8X9HVKiIYkCUhpRSlGgVTegDaBZHQJ04GZE2Hcl1fZQoaAZoCWgPQwir7LsieOFjQJSGlFKUaBVN6ANoFkdAnVkeejEehnV9lChoBmgJaA9DCORKPQvCd2ZAlIaUUpRoFU3oA2gWR0CdX6nIhhYvdX2UKGgGaAloD0MIJCnpYehWYECUhpRSlGgVTegDaBZHQJ1gyMo+fRN1fZQoaAZoCWgPQwjT+IVXkgwlQJSGlFKUaBVLxWgWR0CdZjA44p+ddX2UKGgGaAloD0MI56p5jkhHZUCUhpRSlGgVTegDaBZHQJ1mXN2TxG51fZQoaAZoCWgPQwhb07zjFMhfQJSGlFKUaBVN6ANoFkdAnWchun/DL3V9lChoBmgJaA9DCESGVbyRBUtAlIaUUpRoFUvKaBZHQJ1y1Z+x4Y91fZQoaAZoCWgPQwiKyLCKtxthQJSGlFKUaBVN6ANoFkdAnXmasySFG3V9lChoBmgJaA9DCJktWRVhhGVAlIaUUpRoFU3oA2gWR0Cdex1RLsa9dX2UKGgGaAloD0MImQ6dnneaWUCUhpRSlGgVTegDaBZHQJ18/idat9x1fZQoaAZoCWgPQwitM74vLlpnQJSGlFKUaBVN6ANoFkdAnX1q6asp5XV9lChoBmgJaA9DCOUpq+n6wWRAlIaUUpRoFU3oA2gWR0CdfmylN1yOdX2UKGgGaAloD0MI6gd1kcIaZkCUhpRSlGgVTegDaBZHQJ1/8ZAIIGB1fZQoaAZoCWgPQwjLvcCs0EtlQJSGlFKUaBVN6ANoFkdAnYAKqKgqVnV9lChoBmgJaA9DCPW4b7XOyGNAlIaUUpRoFU3oA2gWR0CdhXJUHY6GdX2UKGgGaAloD0MIl1XYDHDSZUCUhpRSlGgVTegDaBZHQJ2IC19fCyh1fZQoaAZoCWgPQwjpgY/BioZnQJSGlFKUaBVN6ANoFkdAnYkXOGCZnnV9lChoBmgJaA9DCG8u/rani2BAlIaUUpRoFU3oA2gWR0Cdit/CIk7fdX2UKGgGaAloD0MIYLAbtq0ZY0CUhpRSlGgVTegDaBZHQJ2z9lWfbsZ1fZQoaAZoCWgPQwhffNEer11kQJSGlFKUaBVN6ANoFkdAnbU9eIEbHnV9lChoBmgJaA9DCOlfksqU0GBAlIaUUpRoFU3oA2gWR0CduzmLLpzLdX2UKGgGaAloD0MIONibGBKNZkCUhpRSlGgVTegDaBZHQJ28Q1Nxlxx1fZQoaAZoCWgPQwhcWDfenWtmQJSGlFKUaBVN6ANoFkdAnclAGW2PUHV9lChoBmgJaA9DCP1nzY8/W2VAlIaUUpRoFU3oA2gWR0Cdz6LsrupkdX2UKGgGaAloD0MI5DCYv8I9ZECUhpRSlGgVTegDaBZHQJ3RH5dnkDJ1fZQoaAZoCWgPQwjc8/xpo/VfQJSGlFKUaBVN6ANoFkdAndL+fmLcbnV9lChoBmgJaA9DCBFTIoleCWVAlIaUUpRoFU3oA2gWR0Cd02aG5+YudX2UKGgGaAloD0MIh97i4T15Y0CUhpRSlGgVTegDaBZHQJ3UZ2jfvWp1fZQoaAZoCWgPQwj/If32dedlQJSGlFKUaBVN6ANoFkdAndYmTot+TnV9lChoBmgJaA9DCCOHiJtTuWNAlIaUUpRoFU3oA2gWR0Cd1kAy2x6fdX2UKGgGaAloD0MIRS3NrRCTX0CUhpRSlGgVTegDaBZHQJ3bbJYDDCR1fZQoaAZoCWgPQwgbaD7nbolhQJSGlFKUaBVN6ANoFkdAnd4SLIgeR3V9lChoBmgJaA9DCPZcpibBnGJAlIaUUpRoFU3oA2gWR0Cd3wyXUpd9dX2UKGgGaAloD0MIC0Pk9HV0YUCUhpRSlGgVTegDaBZHQJ3gr+T/yXl1fZQoaAZoCWgPQwjU78LW7KRlQJSGlFKUaBVN6ANoFkdAngdzkyULUnV9lChoBmgJaA9DCLw7MlabCmdAlIaUUpRoFU3oA2gWR0CeCIe9Ba9sdX2UKGgGaAloD0MIuoEC7+SOZkCUhpRSlGgVTegDaBZHQJ4Niwqy4Wl1fZQoaAZoCWgPQwiR0JZzKZBkQJSGlFKUaBVN6ANoFkdAng5a2WpqAXV9lChoBmgJaA9DCFcHQNxVtGVAlIaUUpRoFU3oA2gWR0CeGREr5IpZdX2UKGgGaAloD0MIWFaalALYYkCUhpRSlGgVTegDaBZHQJ4fAeZG8VZ1fZQoaAZoCWgPQwih1jTvuF5mQJSGlFKUaBVN6ANoFkdAniBjg2qDLHV9lChoBmgJaA9DCH/ZPXlYwWZAlIaUUpRoFU3oA2gWR0CeIi/etSyddX2UKGgGaAloD0MIqIqp9BP2YUCUhpRSlGgVTegDaBZHQJ4ildzGPxR1fZQoaAZoCWgPQwixGktYG8pkQJSGlFKUaBVN6ANoFkdAniOwxFiKBXV9lChoBmgJaA9DCK2jqgmi/WdAlIaUUpRoFU3oA2gWR0CeJXmZ3LV4dX2UKGgGaAloD0MIfxe2ZqssY0CUhpRSlGgVTegDaBZHQJ4lmLm6oVF1fZQoaAZoCWgPQwiaYDjXMAZmQJSGlFKUaBVN6ANoFkdAnir8otthu3V9lChoBmgJaA9DCEgyq3e4ZGJAlIaUUpRoFU3oA2gWR0CeLbnfVI7OdX2UKGgGaAloD0MId2ouNxjqY0CUhpRSlGgVTegDaBZHQJ4utJFspG51fZQoaAZoCWgPQwifdY2WA3JkQJSGlFKUaBVN6ANoFkdAnjCW8IzFdnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
my_first_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29605208ba6c1cd2f4e2c6971bdfd5f5a4ef77523399a839b40aaac009e62b13
3
+ size 88057
my_first_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c807aa2b34b1148509ad50d162ad55d3b61333d270089af89b81310eddf5fb
3
+ size 43201
my_first_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
my_first_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (243 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 271.36367060612554, "std_reward": 14.179622846680294, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T13:23:47.188704"}