jerick5555 commited on
Commit
df0d06b
·
1 Parent(s): 57e9077
First lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d32ce7fcee5ff1ae5cca2178aaf8e9718f42a6410af5e068b6b969ffb43b8021
3
+ size 147429
First lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
First lander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77cc7a75e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77cc7a7670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77cc7a7700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77cc7a7790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f77cc7a7820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f77cc7a78b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f77cc7a7940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77cc7a79d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f77cc7a7a60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77cc7a7af0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77cc7a7b80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77cc7a7c10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f77cc7a8900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678524100706835376,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBoOT7FFKs/+2x2PgyZoL7FbQw+KToBPgAAAAAAAAAAzbJ+vme4QT4h6qQ+joKIvoOC2rxy5Mk9AAAAAAAAAACa0Hy+0ndyPpbNhT4XIVi+I7/SPN3F3TwAAAAAAAAAAAAOnD3HOKw/8aM3P+Qq0r7Fxnu8vH0ePgAAAAAAAAAADYlwvvf7Kz7aAYg+XiWZvkhAJD3LItA7AAAAAAAAAABVZaG+WL2mPy0Z0b4DBKG+6KulvltGa70AAAAAAAAAAO1MSD4O9vI+DNeRvrynb77P6ZO8QR8xvQAAAAAAAAAAM+rvPFzHTbolbsq3CUMfs+SKKTti2eY2AACAPwAAgD8afw29AXmDPQIoCb4RxFi+eSSJvT7flr0AAAAAAAAAAM0aeL2M8hc+b+8ivpkjbb5+x3a9GKTPOwAAAAAAAAAAmhEAvRzpdj3TQuu8/xcxvlw4qrzmv4I9AAAAAAAAAAAABls8BCWEPT78Xb75WT2+mNQSvfYDgDwAAAAAAAAAAPP9nb32HCm6QBNtueCYYLTFBea4C7CMOAAAgD8AAIA/2poAvi/maT/POAu8yU2ZvjW6gr2b3X+9AAAAAAAAAAAzQXG8gL62PzMhPb91K7g+33l1PE8QAz4AAAAAAAAAADo1mb7y0IS9J55IveN7Hj2hHOI+0OvQvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5j3ONOFockCUhpRSlIwBbJRNHQGMAXSUR0CaCnfyf+S9dX2UKGgGaAloD0MI3IR7ZZ4ccECUhpRSlGgVTSUBaBZHQJoLF1aGHpN1fZQoaAZoCWgPQwhxOV6B6AhxQJSGlFKUaBVNUAFoFkdAmgt0SZjQRnV9lChoBmgJaA9DCD0oKEUrq29AlIaUUpRoFU2EAWgWR0CaDc67NB4VdX2UKGgGaAloD0MIMEYkCq2AcECUhpRSlGgVTV4BaBZHQJoOJKVY6n11fZQoaAZoCWgPQwhm3NRAc7NsQJSGlFKUaBVNQQJoFkdAmg5Nzr/sFHV9lChoBmgJaA9DCBtMw/ARNXJAlIaUUpRoFU1tAWgWR0CaD3q3mV7hdX2UKGgGaAloD0MIQPm7d9SVbUCUhpRSlGgVTUoBaBZHQJoR4FbFCLN1fZQoaAZoCWgPQwi+v0F7dftuQJSGlFKUaBVNIgFoFkdAmhK8I/qxDHV9lChoBmgJaA9DCNmvO9153XBAlIaUUpRoFU0zAWgWR0CaKZsk6cRUdX2UKGgGaAloD0MI7DTSUjmuckCUhpRSlGgVTUgBaBZHQJop2rIYFaB1fZQoaAZoCWgPQwgRN6eSAaJxQJSGlFKUaBVNLAFoFkdAmir0Fjd56nV9lChoBmgJaA9DCGYtBaQ9ynJAlIaUUpRoFU1XAWgWR0CaLDZDiOvMdX2UKGgGaAloD0MIeQH20akocUCUhpRSlGgVTSwBaBZHQJos7p8neBR1fZQoaAZoCWgPQwi2nbZGxFxxQJSGlFKUaBVN0gFoFkdAmiztS/CZW3V9lChoBmgJaA9DCD24O2t3JHFAlIaUUpRoFU2RAWgWR0CaLgDArQPadX2UKGgGaAloD0MI7wOQ2gSacUCUhpRSlGgVTVsBaBZHQJouJDKHO8l1fZQoaAZoCWgPQwivXG+baatyQJSGlFKUaBVNkgFoFkdAmi9pRbbDdnV9lChoBmgJaA9DCKon848+H3JAlIaUUpRoFU1MAWgWR0CaMDI4EOiGdX2UKGgGaAloD0MIKqvpeiLbbUCUhpRSlGgVTYgBaBZHQJoyltQ9A5d1fZQoaAZoCWgPQwgIH0q0ZOdtQJSGlFKUaBVNPQFoFkdAmjMN7ngYQHV9lChoBmgJaA9DCGtJRzkYY3BAlIaUUpRoFU0iAWgWR0CaM8Tot+TedX2UKGgGaAloD0MIcJaS5aQzckCUhpRSlGgVTbwBaBZHQJo1tRqGlAN1fZQoaAZoCWgPQwhI3GPpQ8pyQJSGlFKUaBVN8wFoFkdAmjYh9Tgl4XV9lChoBmgJaA9DCDwTmiTWH3FAlIaUUpRoFU1dAWgWR0CaNkR2r4nGdX2UKGgGaAloD0MI4gZ8fhipUECUhpRSlGgVTRUBaBZHQJo23aPCEYh1fZQoaAZoCWgPQwhV2XdFcFxuQJSGlFKUaBVNGQFoFkdAmjhNaUzKtHV9lChoBmgJaA9DCPnX8sr1+XBAlIaUUpRoFU1PAWgWR0CaOFtiQT24dX2UKGgGaAloD0MIsfm4NtQPcECUhpRSlGgVTbwBaBZHQJo4dUcXFcZ1fZQoaAZoCWgPQwiC/kKPmJFwQJSGlFKUaBVNcQFoFkdAmjoaeK8+R3V9lChoBmgJaA9DCH+jHTf8fG5AlIaUUpRoFU2MAWgWR0CaPH5BTn7pdX2UKGgGaAloD0MIVACMZ9BnbkCUhpRSlGgVTWwBaBZHQJo8v4Glhw51fZQoaAZoCWgPQwiQ9j/A2p5tQJSGlFKUaBVNawFoFkdAmj1zG5tm+XV9lChoBmgJaA9DCJiIt86/UnFAlIaUUpRoFU0MAmgWR0CaPa52Qnx8dX2UKGgGaAloD0MIEoPAymHxcUCUhpRSlGgVTVYBaBZHQJo+1L0z0pV1fZQoaAZoCWgPQwiq8Gd489xyQJSGlFKUaBVNQwFoFkdAmj84AbQ1JnV9lChoBmgJaA9DCDWXGwx1N3FAlIaUUpRoFU0pAWgWR0CaQCUgSvkjdX2UKGgGaAloD0MI7upVZPSNb0CUhpRSlGgVTTgBaBZHQJpBCNAC4jN1fZQoaAZoCWgPQwg0oUliyYtyQJSGlFKUaBVNOAFoFkdAmkEnrY5DJHV9lChoBmgJaA9DCC3Q7pCiFnJAlIaUUpRoFU0uAWgWR0CaQVR0EHMVdX2UKGgGaAloD0MIYCFzZdCocUCUhpRSlGgVTZ0BaBZHQJpBnaTOgQJ1fZQoaAZoCWgPQwicwkoFFaNRQJSGlFKUaBVN6ANoFkdAmkSWzru6VnV9lChoBmgJaA9DCJW6ZByjfm1AlIaUUpRoFU1vAWgWR0CaRS3Dej20dX2UKGgGaAloD0MIqJAr9ex/cECUhpRSlGgVTXQBaBZHQJpFdtO2y9p1fZQoaAZoCWgPQwiEoKNVLShvQJSGlFKUaBVNQgFoFkdAmkWW7Wd3CHV9lChoBmgJaA9DCBB39SoyzEhAlIaUUpRoFU0BAWgWR0CaReCTEBKddX2UKGgGaAloD0MICoFc4sgTbECUhpRSlGgVTRIBaBZHQJpHhy+6Ae91fZQoaAZoCWgPQwiXqN4amFpwQJSGlFKUaBVNPwFoFkdAmkheJ1q33HV9lChoBmgJaA9DCI2bGmg+D2xAlIaUUpRoFU3DAWgWR0CaSSJK8L8adX2UKGgGaAloD0MIhBJm2n6Wb0CUhpRSlGgVTUABaBZHQJpJ7Llmvnt1fZQoaAZoCWgPQwh3hqktdYJwQJSGlFKUaBVNTgFoFkdAmk0y/wiJO3V9lChoBmgJaA9DCLX9KyuNdXBAlIaUUpRoFU1jAWgWR0CaTbBP9DQadX2UKGgGaAloD0MIYp0q3/NeckCUhpRSlGgVTTMBaBZHQJpOrq4YrJ91fZQoaAZoCWgPQwineccpuplwQJSGlFKUaBVNQwFoFkdAmk9J9/jKgnV9lChoBmgJaA9DCBQhdTt79nBAlIaUUpRoFU1nAWgWR0CabLqoIfKZdX2UKGgGaAloD0MImRJJ9DJSbECUhpRSlGgVTYoBaBZHQJpuSs2eg+R1fZQoaAZoCWgPQwi7tOGwtBNyQJSGlFKUaBVNtwFoFkdAmm5QCOmzjXV9lChoBmgJaA9DCDeMguBxDHFAlIaUUpRoFU1BAWgWR0Cab1JF9a2XdX2UKGgGaAloD0MIIJxPHeszcECUhpRSlGgVTVQBaBZHQJpvqbNKRMh1fZQoaAZoCWgPQwi4dqIk5PJxQJSGlFKUaBVNZAFoFkdAmm/PXGwRoXV9lChoBmgJaA9DCO8CJQVWDHJAlIaUUpRoFU0YAWgWR0CacAVghKUWdX2UKGgGaAloD0MIXpz4akfMcUCUhpRSlGgVTSMBaBZHQJpw3bUPQOZ1fZQoaAZoCWgPQwgHYAMihElwQJSGlFKUaBVNSQFoFkdAmnD9u5z5oHV9lChoBmgJaA9DCHR63o3FlnBAlIaUUpRoFU2AAWgWR0CacS5lOGj9dX2UKGgGaAloD0MIgXhdv2B2cECUhpRSlGgVTaYBaBZHQJpyg1uR9w51fZQoaAZoCWgPQwhsBOJ1/b5rQJSGlFKUaBVNZQFoFkdAmnM53gUDdXV9lChoBmgJaA9DCL/VOnG5snBAlIaUUpRoFU0pAWgWR0Cac4KDTSb6dX2UKGgGaAloD0MICYhJuJAFcUCUhpRSlGgVTSABaBZHQJp0JwbVBld1fZQoaAZoCWgPQwgLDcSymdxQQJSGlFKUaBVL+mgWR0CadFkSVW0adX2UKGgGaAloD0MIn3b4a7IbcECUhpRSlGgVTVYBaBZHQJp1Tq8lHBl1fZQoaAZoCWgPQwjU1ohgXJZxQJSGlFKUaBVNQAFoFkdAmngHJxNqQHV9lChoBmgJaA9DCB+A1CZOsmxAlIaUUpRoFU0cAWgWR0CaeCVoYekpdX2UKGgGaAloD0MIorYNo2BYcECUhpRSlGgVTdABaBZHQJp4fKSxJNF1fZQoaAZoCWgPQwjVyoRfat5tQJSGlFKUaBVNNwFoFkdAmnksImgJ1XV9lChoBmgJaA9DCDiHa7WH90FAlIaUUpRoFUvXaBZHQJp6Xs2NvO11fZQoaAZoCWgPQwiWkuUklC1vQJSGlFKUaBVNOQFoFkdAmnpxFI/Z/XV9lChoBmgJaA9DCHNoke28N3FAlIaUUpRoFU1xAWgWR0Caeq7N0NjLdX2UKGgGaAloD0MI68a7I+NKckCUhpRSlGgVTWEBaBZHQJp61U1hsqJ1fZQoaAZoCWgPQwjHZHH/UaBxQJSGlFKUaBVNbwFoFkdAmnwoChew93V9lChoBmgJaA9DCJEOD2F8EnFAlIaUUpRoFU1rAWgWR0CafD8IAwPAdX2UKGgGaAloD0MIoMVSJF+abECUhpRSlGgVTT0BaBZHQJp9A2XLNfR1fZQoaAZoCWgPQwg/jBAe7ehyQJSGlFKUaBVNWwFoFkdAmn0fSDyvtHV9lChoBmgJaA9DCDmAft8/CG9AlIaUUpRoFU1gAWgWR0CafvdSEUTMdX2UKGgGaAloD0MIby2T4fhWb0CUhpRSlGgVTVsBaBZHQJqAJIczZYh1fZQoaAZoCWgPQwhbCd0l8UpuQJSGlFKUaBVNTwJoFkdAmoBFnAZbZHV9lChoBmgJaA9DCNTuVwG+s0pAlIaUUpRoFU0UAWgWR0CagIKU3XI2dX2UKGgGaAloD0MICJEMOTazcUCUhpRSlGgVTUoBaBZHQJqCJ2aDwph1fZQoaAZoCWgPQwhuTiUDgJRyQJSGlFKUaBVNJwFoFkdAmoO7WEsasXV9lChoBmgJaA9DCI9uhEVFGm1AlIaUUpRoFU1XAWgWR0Cag+Kh+OOsdX2UKGgGaAloD0MIVp3VAjtGcECUhpRSlGgVTUUBaBZHQJqFDzundft1fZQoaAZoCWgPQwhLICV2rQhxQJSGlFKUaBVNEQJoFkdAmoVCTdLxqnV9lChoBmgJaA9DCMZNDTRfwnBAlIaUUpRoFU1sAWgWR0CahlduYQardX2UKGgGaAloD0MIZRu4A3VFcECUhpRSlGgVTRsBaBZHQJqHAN2C/XZ1fZQoaAZoCWgPQwgCLsiW5cxvQJSGlFKUaBVNgQFoFkdAmodZj2BatHV9lChoBmgJaA9DCNuIJ7tZuHBAlIaUUpRoFU0oAWgWR0Cah3Dr7fpEdX2UKGgGaAloD0MIPEuQEdD7a0CUhpRSlGgVTScBaBZHQJqKY2zfJmx1fZQoaAZoCWgPQwirJLIP8l9xQJSGlFKUaBVNtQFoFkdAmox/dVNpNHV9lChoBmgJaA9DCPA0mfG2/XBAlIaUUpRoFU0uAWgWR0CajKZkTYdydX2UKGgGaAloD0MIa2EW2nkMcECUhpRSlGgVTVoBaBZHQJqOsRTS9dx1fZQoaAZoCWgPQwjWpxyTha5yQJSGlFKUaBVNVQFoFkdAmo8gGOdXk3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
First lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce617723efd85f3a0100fa54d7da9a1a80d2de5727921ed083f1b37ffa1fcd28
3
+ size 87929
First lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87f79edd21472ac58587b2752909a271a79e9c9941e0802a2bccf1799024931a
3
+ size 43393
First lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
First lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 240.62 +/- 39.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77cc7a75e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77cc7a7670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77cc7a7700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77cc7a7790>", "_build": "<function ActorCriticPolicy._build at 0x7f77cc7a7820>", "forward": "<function ActorCriticPolicy.forward at 0x7f77cc7a78b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f77cc7a7940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77cc7a79d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f77cc7a7a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77cc7a7af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77cc7a7b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77cc7a7c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f77cc7a8900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678524100706835376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBoOT7FFKs/+2x2PgyZoL7FbQw+KToBPgAAAAAAAAAAzbJ+vme4QT4h6qQ+joKIvoOC2rxy5Mk9AAAAAAAAAACa0Hy+0ndyPpbNhT4XIVi+I7/SPN3F3TwAAAAAAAAAAAAOnD3HOKw/8aM3P+Qq0r7Fxnu8vH0ePgAAAAAAAAAADYlwvvf7Kz7aAYg+XiWZvkhAJD3LItA7AAAAAAAAAABVZaG+WL2mPy0Z0b4DBKG+6KulvltGa70AAAAAAAAAAO1MSD4O9vI+DNeRvrynb77P6ZO8QR8xvQAAAAAAAAAAM+rvPFzHTbolbsq3CUMfs+SKKTti2eY2AACAPwAAgD8afw29AXmDPQIoCb4RxFi+eSSJvT7flr0AAAAAAAAAAM0aeL2M8hc+b+8ivpkjbb5+x3a9GKTPOwAAAAAAAAAAmhEAvRzpdj3TQuu8/xcxvlw4qrzmv4I9AAAAAAAAAAAABls8BCWEPT78Xb75WT2+mNQSvfYDgDwAAAAAAAAAAPP9nb32HCm6QBNtueCYYLTFBea4C7CMOAAAgD8AAIA/2poAvi/maT/POAu8yU2ZvjW6gr2b3X+9AAAAAAAAAAAzQXG8gL62PzMhPb91K7g+33l1PE8QAz4AAAAAAAAAADo1mb7y0IS9J55IveN7Hj2hHOI+0OvQvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5j3ONOFockCUhpRSlIwBbJRNHQGMAXSUR0CaCnfyf+S9dX2UKGgGaAloD0MI3IR7ZZ4ccECUhpRSlGgVTSUBaBZHQJoLF1aGHpN1fZQoaAZoCWgPQwhxOV6B6AhxQJSGlFKUaBVNUAFoFkdAmgt0SZjQRnV9lChoBmgJaA9DCD0oKEUrq29AlIaUUpRoFU2EAWgWR0CaDc67NB4VdX2UKGgGaAloD0MIMEYkCq2AcECUhpRSlGgVTV4BaBZHQJoOJKVY6n11fZQoaAZoCWgPQwhm3NRAc7NsQJSGlFKUaBVNQQJoFkdAmg5Nzr/sFHV9lChoBmgJaA9DCBtMw/ARNXJAlIaUUpRoFU1tAWgWR0CaD3q3mV7hdX2UKGgGaAloD0MIQPm7d9SVbUCUhpRSlGgVTUoBaBZHQJoR4FbFCLN1fZQoaAZoCWgPQwi+v0F7dftuQJSGlFKUaBVNIgFoFkdAmhK8I/qxDHV9lChoBmgJaA9DCNmvO9153XBAlIaUUpRoFU0zAWgWR0CaKZsk6cRUdX2UKGgGaAloD0MI7DTSUjmuckCUhpRSlGgVTUgBaBZHQJop2rIYFaB1fZQoaAZoCWgPQwgRN6eSAaJxQJSGlFKUaBVNLAFoFkdAmir0Fjd56nV9lChoBmgJaA9DCGYtBaQ9ynJAlIaUUpRoFU1XAWgWR0CaLDZDiOvMdX2UKGgGaAloD0MIeQH20akocUCUhpRSlGgVTSwBaBZHQJos7p8neBR1fZQoaAZoCWgPQwi2nbZGxFxxQJSGlFKUaBVN0gFoFkdAmiztS/CZW3V9lChoBmgJaA9DCD24O2t3JHFAlIaUUpRoFU2RAWgWR0CaLgDArQPadX2UKGgGaAloD0MI7wOQ2gSacUCUhpRSlGgVTVsBaBZHQJouJDKHO8l1fZQoaAZoCWgPQwivXG+baatyQJSGlFKUaBVNkgFoFkdAmi9pRbbDdnV9lChoBmgJaA9DCKon848+H3JAlIaUUpRoFU1MAWgWR0CaMDI4EOiGdX2UKGgGaAloD0MIKqvpeiLbbUCUhpRSlGgVTYgBaBZHQJoyltQ9A5d1fZQoaAZoCWgPQwgIH0q0ZOdtQJSGlFKUaBVNPQFoFkdAmjMN7ngYQHV9lChoBmgJaA9DCGtJRzkYY3BAlIaUUpRoFU0iAWgWR0CaM8Tot+TedX2UKGgGaAloD0MIcJaS5aQzckCUhpRSlGgVTbwBaBZHQJo1tRqGlAN1fZQoaAZoCWgPQwhI3GPpQ8pyQJSGlFKUaBVN8wFoFkdAmjYh9Tgl4XV9lChoBmgJaA9DCDwTmiTWH3FAlIaUUpRoFU1dAWgWR0CaNkR2r4nGdX2UKGgGaAloD0MI4gZ8fhipUECUhpRSlGgVTRUBaBZHQJo23aPCEYh1fZQoaAZoCWgPQwhV2XdFcFxuQJSGlFKUaBVNGQFoFkdAmjhNaUzKtHV9lChoBmgJaA9DCPnX8sr1+XBAlIaUUpRoFU1PAWgWR0CaOFtiQT24dX2UKGgGaAloD0MIsfm4NtQPcECUhpRSlGgVTbwBaBZHQJo4dUcXFcZ1fZQoaAZoCWgPQwiC/kKPmJFwQJSGlFKUaBVNcQFoFkdAmjoaeK8+R3V9lChoBmgJaA9DCH+jHTf8fG5AlIaUUpRoFU2MAWgWR0CaPH5BTn7pdX2UKGgGaAloD0MIVACMZ9BnbkCUhpRSlGgVTWwBaBZHQJo8v4Glhw51fZQoaAZoCWgPQwiQ9j/A2p5tQJSGlFKUaBVNawFoFkdAmj1zG5tm+XV9lChoBmgJaA9DCJiIt86/UnFAlIaUUpRoFU0MAmgWR0CaPa52Qnx8dX2UKGgGaAloD0MIEoPAymHxcUCUhpRSlGgVTVYBaBZHQJo+1L0z0pV1fZQoaAZoCWgPQwiq8Gd489xyQJSGlFKUaBVNQwFoFkdAmj84AbQ1JnV9lChoBmgJaA9DCDWXGwx1N3FAlIaUUpRoFU0pAWgWR0CaQCUgSvkjdX2UKGgGaAloD0MI7upVZPSNb0CUhpRSlGgVTTgBaBZHQJpBCNAC4jN1fZQoaAZoCWgPQwg0oUliyYtyQJSGlFKUaBVNOAFoFkdAmkEnrY5DJHV9lChoBmgJaA9DCC3Q7pCiFnJAlIaUUpRoFU0uAWgWR0CaQVR0EHMVdX2UKGgGaAloD0MIYCFzZdCocUCUhpRSlGgVTZ0BaBZHQJpBnaTOgQJ1fZQoaAZoCWgPQwicwkoFFaNRQJSGlFKUaBVN6ANoFkdAmkSWzru6VnV9lChoBmgJaA9DCJW6ZByjfm1AlIaUUpRoFU1vAWgWR0CaRS3Dej20dX2UKGgGaAloD0MIqJAr9ex/cECUhpRSlGgVTXQBaBZHQJpFdtO2y9p1fZQoaAZoCWgPQwiEoKNVLShvQJSGlFKUaBVNQgFoFkdAmkWW7Wd3CHV9lChoBmgJaA9DCBB39SoyzEhAlIaUUpRoFU0BAWgWR0CaReCTEBKddX2UKGgGaAloD0MICoFc4sgTbECUhpRSlGgVTRIBaBZHQJpHhy+6Ae91fZQoaAZoCWgPQwiXqN4amFpwQJSGlFKUaBVNPwFoFkdAmkheJ1q33HV9lChoBmgJaA9DCI2bGmg+D2xAlIaUUpRoFU3DAWgWR0CaSSJK8L8adX2UKGgGaAloD0MIhBJm2n6Wb0CUhpRSlGgVTUABaBZHQJpJ7Llmvnt1fZQoaAZoCWgPQwh3hqktdYJwQJSGlFKUaBVNTgFoFkdAmk0y/wiJO3V9lChoBmgJaA9DCLX9KyuNdXBAlIaUUpRoFU1jAWgWR0CaTbBP9DQadX2UKGgGaAloD0MIYp0q3/NeckCUhpRSlGgVTTMBaBZHQJpOrq4YrJ91fZQoaAZoCWgPQwineccpuplwQJSGlFKUaBVNQwFoFkdAmk9J9/jKgnV9lChoBmgJaA9DCBQhdTt79nBAlIaUUpRoFU1nAWgWR0CabLqoIfKZdX2UKGgGaAloD0MImRJJ9DJSbECUhpRSlGgVTYoBaBZHQJpuSs2eg+R1fZQoaAZoCWgPQwi7tOGwtBNyQJSGlFKUaBVNtwFoFkdAmm5QCOmzjXV9lChoBmgJaA9DCDeMguBxDHFAlIaUUpRoFU1BAWgWR0Cab1JF9a2XdX2UKGgGaAloD0MIIJxPHeszcECUhpRSlGgVTVQBaBZHQJpvqbNKRMh1fZQoaAZoCWgPQwi4dqIk5PJxQJSGlFKUaBVNZAFoFkdAmm/PXGwRoXV9lChoBmgJaA9DCO8CJQVWDHJAlIaUUpRoFU0YAWgWR0CacAVghKUWdX2UKGgGaAloD0MIXpz4akfMcUCUhpRSlGgVTSMBaBZHQJpw3bUPQOZ1fZQoaAZoCWgPQwgHYAMihElwQJSGlFKUaBVNSQFoFkdAmnD9u5z5oHV9lChoBmgJaA9DCHR63o3FlnBAlIaUUpRoFU2AAWgWR0CacS5lOGj9dX2UKGgGaAloD0MIgXhdv2B2cECUhpRSlGgVTaYBaBZHQJpyg1uR9w51fZQoaAZoCWgPQwhsBOJ1/b5rQJSGlFKUaBVNZQFoFkdAmnM53gUDdXV9lChoBmgJaA9DCL/VOnG5snBAlIaUUpRoFU0pAWgWR0Cac4KDTSb6dX2UKGgGaAloD0MICYhJuJAFcUCUhpRSlGgVTSABaBZHQJp0JwbVBld1fZQoaAZoCWgPQwgLDcSymdxQQJSGlFKUaBVL+mgWR0CadFkSVW0adX2UKGgGaAloD0MIn3b4a7IbcECUhpRSlGgVTVYBaBZHQJp1Tq8lHBl1fZQoaAZoCWgPQwjU1ohgXJZxQJSGlFKUaBVNQAFoFkdAmngHJxNqQHV9lChoBmgJaA9DCB+A1CZOsmxAlIaUUpRoFU0cAWgWR0CaeCVoYekpdX2UKGgGaAloD0MIorYNo2BYcECUhpRSlGgVTdABaBZHQJp4fKSxJNF1fZQoaAZoCWgPQwjVyoRfat5tQJSGlFKUaBVNNwFoFkdAmnksImgJ1XV9lChoBmgJaA9DCDiHa7WH90FAlIaUUpRoFUvXaBZHQJp6Xs2NvO11fZQoaAZoCWgPQwiWkuUklC1vQJSGlFKUaBVNOQFoFkdAmnpxFI/Z/XV9lChoBmgJaA9DCHNoke28N3FAlIaUUpRoFU1xAWgWR0Caeq7N0NjLdX2UKGgGaAloD0MI68a7I+NKckCUhpRSlGgVTWEBaBZHQJp61U1hsqJ1fZQoaAZoCWgPQwjHZHH/UaBxQJSGlFKUaBVNbwFoFkdAmnwoChew93V9lChoBmgJaA9DCJEOD2F8EnFAlIaUUpRoFU1rAWgWR0CafD8IAwPAdX2UKGgGaAloD0MIoMVSJF+abECUhpRSlGgVTT0BaBZHQJp9A2XLNfR1fZQoaAZoCWgPQwg/jBAe7ehyQJSGlFKUaBVNWwFoFkdAmn0fSDyvtHV9lChoBmgJaA9DCDmAft8/CG9AlIaUUpRoFU1gAWgWR0CafvdSEUTMdX2UKGgGaAloD0MIby2T4fhWb0CUhpRSlGgVTVsBaBZHQJqAJIczZYh1fZQoaAZoCWgPQwhbCd0l8UpuQJSGlFKUaBVNTwJoFkdAmoBFnAZbZHV9lChoBmgJaA9DCNTuVwG+s0pAlIaUUpRoFU0UAWgWR0CagIKU3XI2dX2UKGgGaAloD0MICJEMOTazcUCUhpRSlGgVTUoBaBZHQJqCJ2aDwph1fZQoaAZoCWgPQwhuTiUDgJRyQJSGlFKUaBVNJwFoFkdAmoO7WEsasXV9lChoBmgJaA9DCI9uhEVFGm1AlIaUUpRoFU1XAWgWR0Cag+Kh+OOsdX2UKGgGaAloD0MIVp3VAjtGcECUhpRSlGgVTUUBaBZHQJqFDzundft1fZQoaAZoCWgPQwhLICV2rQhxQJSGlFKUaBVNEQJoFkdAmoVCTdLxqnV9lChoBmgJaA9DCMZNDTRfwnBAlIaUUpRoFU1sAWgWR0CahlduYQardX2UKGgGaAloD0MIZRu4A3VFcECUhpRSlGgVTRsBaBZHQJqHAN2C/XZ1fZQoaAZoCWgPQwgCLsiW5cxvQJSGlFKUaBVNgQFoFkdAmodZj2BatHV9lChoBmgJaA9DCNuIJ7tZuHBAlIaUUpRoFU0oAWgWR0Cah3Dr7fpEdX2UKGgGaAloD0MIPEuQEdD7a0CUhpRSlGgVTScBaBZHQJqKY2zfJmx1fZQoaAZoCWgPQwirJLIP8l9xQJSGlFKUaBVNtQFoFkdAmox/dVNpNHV9lChoBmgJaA9DCPA0mfG2/XBAlIaUUpRoFU0uAWgWR0CajKZkTYdydX2UKGgGaAloD0MIa2EW2nkMcECUhpRSlGgVTVoBaBZHQJqOsRTS9dx1fZQoaAZoCWgPQwjWpxyTha5yQJSGlFKUaBVNVQFoFkdAmo8gGOdXk3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 240.616905559582, "std_reward": 39.46381753964601, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T09:09:24.196623"}