|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
# Usage |
|
|
|
Define the model and config |
|
```python |
|
from transformers import PreTrainedModel, PretrainedConfig |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class MNISTConfig(PretrainedConfig): |
|
model_type = "mnist_classifier" |
|
|
|
def __init__(self, input_size=784, hidden_size1=1024, hidden_size2=512, num_labels=10, **kwargs): |
|
super().__init__(**kwargs) |
|
self.input_size = input_size |
|
self.hidden_size1 = hidden_size1 |
|
self.hidden_size2 = hidden_size2 |
|
self.num_labels = num_labels |
|
|
|
class MNISTClassifier(PreTrainedModel): |
|
config_class = MNISTConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.layer1 = nn.Linear(config.input_size, config.hidden_size1) |
|
self.layer2 = nn.Linear(config.hidden_size1, config.hidden_size2) |
|
self.layer3 = nn.Linear(config.hidden_size2, config.num_labels) |
|
|
|
def forward(self, pixel_values): |
|
inputs = pixel_values.view(-1, self.config.input_size) |
|
outputs = self.layer1(inputs) |
|
outputs = F.leaky_relu(outputs) |
|
outputs = self.layer2(outputs) |
|
outputs = F.leaky_relu(outputs) |
|
outputs = self.layer3(outputs) |
|
return outputs |
|
``` |
|
|
|
Register the model |
|
|
|
```python |
|
from transformers import AutoConfig, AutoModel |
|
|
|
AutoConfig.register("mnist_classifier", MNISTConfig) |
|
AutoModel.register(MNISTConfig, MNISTClassifier) |
|
``` |
|
|
|
Run Inference |
|
```python |
|
from transformers import AutoConfig, AutoModel |
|
import torch |
|
|
|
config = AutoConfig.from_pretrained("jerilseb/mnist-classifier") |
|
model = AutoModel.from_pretrained("jerilseb/mnist-classifier") |
|
|
|
input_tensor = torch.randn(1, 28, 28) # Single image, adjust batch size as needed |
|
|
|
with torch.no_grad(): |
|
output = model(input_tensor) |
|
|
|
predicted_class = output.argmax(-1).item() |
|
print(f"Predicted class: {predicted_class}") |
|
``` |
|
|