File size: 2,072 Bytes
63c080e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- formospeech/tat_asr_aligned
model-index:
- name: Whisper Tiny Taiwanese (vanilla)
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Taiwanese (vanilla)

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9557
- Cer: 21.7372

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 681
- training_steps: 6810
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.523         | 0.9985 | 681  | 0.7177          | 29.0462 |
| 0.3561        | 1.9971 | 1362 | 0.6283          | 24.2773 |
| 0.2406        | 2.9956 | 2043 | 0.6268          | 23.1643 |
| 0.1598        | 3.9941 | 2724 | 0.6796          | 22.8912 |
| 0.1           | 4.9927 | 3405 | 0.7482          | 23.3539 |
| 0.0618        | 5.9912 | 4086 | 0.8209          | 22.8447 |
| 0.039         | 6.9897 | 4767 | 0.8669          | 22.3618 |
| 0.0182        | 7.9883 | 5448 | 0.9197          | 22.4326 |
| 0.012         | 8.9868 | 6129 | 0.9375          | 21.9010 |
| 0.0085        | 9.9853 | 6810 | 0.9557          | 21.7372 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1