--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - jfan-98/autotrain-data-LegalLong_on_contracts co2_eq_emissions: emissions: 47.64808387548789 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1230246837 - CO2 Emissions (in grams): 47.6481 ## Validation Metrics - Loss: 0.265 - Accuracy: 0.943 - Macro F1: 0.944 - Micro F1: 0.943 - Weighted F1: 0.943 - Macro Precision: 0.947 - Micro Precision: 0.943 - Weighted Precision: 0.944 - Macro Recall: 0.943 - Micro Recall: 0.943 - Weighted Recall: 0.943 # - Macro F1: 0.944 # - Micro F1: 0.943 # - Macro Precision: 0.947 # - Micro Precision: 0.943 # - Macro Recall: 0.943 # - Micro Recall: 0.943 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jfan-98/autotrain-LegalLong_on_contracts-1230246837 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jfan-98/autotrain-LegalLong_on_contracts-1230246837", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jfan-98/autotrain-LegalLong_on_contracts-1230246837", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```