jfjensen commited on
Commit
81066a8
·
1 Parent(s): ec3991b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 186.66 +/- 74.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19bed3c820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19bed3c8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19bed3c940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19bed3c9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f19bed3ca60>", "forward": "<function ActorCriticPolicy.forward at 0x7f19bed3caf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19bed3cb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19bed3cc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19bed3cca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19bed3cd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19bed3cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19bed2fd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670521257285560698, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMDazxcvzS6U+hQOw1T9zdFff86dok1tgAAgD8AAIA/TVpQPfasJrqQmaQ7LTcYNZNksroM3RE0AACAPwAAgD/jP4U+KuAEveAJijxjKJK87jdpvrgSWb0AAIA/AACAP11oyT68RcY+2EllPgLgwb6KOGI9OlQIvQAAAAAAAAAAUM5SP9Irh75BK4A6wEdHuR1bK7xQA+e4AACAPwAAgD+wov8+PWlCvRKvUjy+Miu8usyUvQJcDD0AAIA/AAAAABonMj32DGC6icaRu1o1prX5X6G5r2qmOgAAgD8AAIA/egYevo93QD3IYWU+DNOEvlz2Ir0KL1g9AAAAAAAAAABgmz8+S7eVP8bVjz7W4cu+KSmPPnZpyDwAAAAAAAAAAGYCAT24Jtq5Cif2u6R+DzeZFZG7IhWDtgAAgD8AAIA/zemePKRQY7kWjTM8INiqtuu5/rqHmKi1AACAPwAAgD+mdeg9w2kyukYLjDntYSw2KaM/OwLlvbgAAIA/AACAPy0rG748uI4/U1bavtB4m7713Mu9SskIvgAAAAAAAAAAzWvCPClIdLpIw4M7jvasNom7CDqnvpa6AACAPwAAgD8g6o8+BaOdu8jnbbnNJns2IcPSvOkMijgAAIA/AACAP6rcxD6BhDy9L5OUPADlNbx0Igi+dwY3uwAAAAAAAAAAGoWcvSnsDLogqnC84kvFtTpgHbvdpjA1AACAPwAAgD/NPuC9UjjDt3DOvTvv5po4fP8eOjCkb7oAAIA/AACAP4CLJb17pI+6mvPcOZSxObmU/A07rtfRuAAAgD8AAIA/JZKOvvtt2z5T5eo9cWZDvhZF172vHR29AAAAAAAAAABmGnk89oxGujja2rpKQHW2orC1O+OK/TkAAIA/AACAP9qUor32FBy63lrCutX6X7VbCGC6wAPeOQAAgD8AAIA/5g8PvaH0vD8yUua+T02KPgjEMDz3QZg9AAAAAAAAAACwDFu+nlDLPepbkj214XK+/kDIvAAxrj0AAAAAAAAAAFqnfj5vy2U+Pn6lPSxFgL6ETgo9SBEIPgAAAAAAAAAAqp+gPk9ldbwd8ai9QRJeO0T37j3vbAM+AACAPwAAgD+zTDQ9JpeXPkpdU70WIGa+ZYwkvWZvXT0AAAAAAAAAAAYKdT4Bkga9y1ACPl55rTwxV02+oRUWvgAAgD8AAIA/2o4pvqjvpj/0dRa/ksHFvrtarr2+PgK+AAAAAAAAAACgvDC+vIicPmfZjT3qcWu+fbhVvSaw8DwAAAAAAAAAAIA7Ez1Zlqc/cNFtPpdVoL7O4ws9DGSiPQAAAAAAAAAARqOhPsuQGz/i4TI8xmDBvrPzTT0W55i8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFyr/Wl4pKMCUhpRSlIwBbJRLtYwBdJRHQIghMfcN6Pd1fZQoaAZoCWgPQwipaKz9nWpcQJSGlFKUaBVN6ANoFkdAiC4FI/Z/TnV9lChoBmgJaA9DCMS12sNe8V5AlIaUUpRoFU3oA2gWR0CIL2hdt2s8dX2UKGgGaAloD0MIGHrE6LlFBECUhpRSlGgVS8hoFkdAiEEtWluWKXV9lChoBmgJaA9DCP+WAPxT2lpAlIaUUpRoFU3oA2gWR0CIQcBczImxdX2UKGgGaAloD0MIzGPNyCAjVECUhpRSlGgVTegDaBZHQIhIt7hNucd1fZQoaAZoCWgPQwhtNlZinrJYQJSGlFKUaBVN6ANoFkdAiFRdfsu3+nV9lChoBmgJaA9DCAk02NR5TFpAlIaUUpRoFU3oA2gWR0CIad8zAN5MdX2UKGgGaAloD0MI2xZlNsgcTcCUhpRSlGgVS99oFkdAiGpv8Q7LdXV9lChoBmgJaA9DCJBN8iN+x1dAlIaUUpRoFU3oA2gWR0CIbh3Roh6jdX2UKGgGaAloD0MIkdYYdELRX0CUhpRSlGgVTegDaBZHQIh1r04BFNN1fZQoaAZoCWgPQwgo0ZLH031bQJSGlFKUaBVN6ANoFkdAiHzfffoA4nV9lChoBmgJaA9DCOc3TDTILmJAlIaUUpRoFU3oA2gWR0CIguuBczIndX2UKGgGaAloD0MIEW4yqgyMZECUhpRSlGgVTegDaBZHQIiH4FA3T/h1fZQoaAZoCWgPQwjd09Udi99IQJSGlFKUaBVN6ANoFkdAiJiXzDn/1nV9lChoBmgJaA9DCKPogY/BsmFAlIaUUpRoFU3oA2gWR0CIp4gq3EyddX2UKGgGaAloD0MIpaDbSxoJZUCUhpRSlGgVTegDaBZHQIiqdI7Njb11fZQoaAZoCWgPQwj2C3bDNgliQJSGlFKUaBVN6ANoFkdAiKrz9sJpnHV9lChoBmgJaA9DCFFmg0wyzlxAlIaUUpRoFU3oA2gWR0CIq/n9vS+hdX2UKGgGaAloD0MI1lQWhV0QOECUhpRSlGgVS/loFkdAiK3pm29cr3V9lChoBmgJaA9DCOm5ha5EImBAlIaUUpRoFU3oA2gWR0CIsJF5OafBdX2UKGgGaAloD0MIHm6HhsVUYECUhpRSlGgVTegDaBZHQIiyp6+nIhh1fZQoaAZoCWgPQwiTxmgdVfZgQJSGlFKUaBVN6ANoFkdAiLmX2ugYg3V9lChoBmgJaA9DCEp87gT7zFxAlIaUUpRoFU3oA2gWR0CIvHbs4T9LdX2UKGgGaAloD0MIFceBV8uLV0CUhpRSlGgVTegDaBZHQIi9wfhddE91fZQoaAZoCWgPQwj8/WK2ZA0jwJSGlFKUaBVN6ANoFkdAiL34j0L+gnV9lChoBmgJaA9DCD2Zf/TN1WJAlIaUUpRoFU3oA2gWR0CIwPmh/RVqdX2UKGgGaAloD0MIzqrP1VZsXkCUhpRSlGgVTegDaBZHQIjFNWhh6Sl1fZQoaAZoCWgPQwgZrDjVWgtgQJSGlFKUaBVN6ANoFkdAiMZTgl4TsnV9lChoBmgJaA9DCPUSY5l+iRVAlIaUUpRoFUu4aBZHQIkfdlTWGyp1fZQoaAZoCWgPQwg7b2OzI/RZQJSGlFKUaBVN6ANoFkdAiSJcMmWt2nV9lChoBmgJaA9DCHvdIjDWdVlAlIaUUpRoFU3oA2gWR0CJI8kWykbhdX2UKGgGaAloD0MINIKN69+wUECUhpRSlGgVTegDaBZHQIkmzHZK3/h1fZQoaAZoCWgPQwjuztptF3FhQJSGlFKUaBVN6ANoFkdAiSc7O3UhFHV9lChoBmgJaA9DCCwN/KiGffm/lIaUUpRoFUv7aBZHQIktVH8TBZZ1fZQoaAZoCWgPQwiGHjF6btZXQJSGlFKUaBVN6ANoFkdAiTL7K7qY7nV9lChoBmgJaA9DCMEeEynNljZAlIaUUpRoFUvHaBZHQIk1XduYQat1fZQoaAZoCWgPQwio4PCCiO9ZQJSGlFKUaBVN6ANoFkdAiWChGhEjPnV9lChoBmgJaA9DCBctQNvqWGRAlIaUUpRoFU3oA2gWR0CJagY5T6zmdX2UKGgGaAloD0MItFn1uVp4YUCUhpRSlGgVTegDaBZHQIl+AZXMhX91fZQoaAZoCWgPQwh7FoTyPio/QJSGlFKUaBVN6ANoFkdAiX6MasIVunV9lChoBmgJaA9DCD3wMVjx0mJAlIaUUpRoFU3oA2gWR0CJhZeTFERbdX2UKGgGaAloD0MILPUsCOWPXkCUhpRSlGgVTegDaBZHQImRoy9EkSp1fZQoaAZoCWgPQwibVgqBXB5EQJSGlFKUaBVN6ANoFkdAiaeAEdNnG3V9lChoBmgJaA9DCL06x4Ds5F9AlIaUUpRoFU3oA2gWR0CJqArdWQwLdX2UKGgGaAloD0MIXFfMCG/2YUCUhpRSlGgVTegDaBZHQImzfnp0OmR1fZQoaAZoCWgPQwivzcZKzNBSQJSGlFKUaBVN6ANoFkdAibrchkiD/XV9lChoBmgJaA9DCPAZidCI7WFAlIaUUpRoFU3oA2gWR0CJwSZk078vdX2UKGgGaAloD0MIzXaFPlhXW0CUhpRSlGgVTegDaBZHQInGP5N47ih1fZQoaAZoCWgPQwjaxwp+GxJZQJSGlFKUaBVN6ANoFkdAid8SUC7sfXV9lChoBmgJaA9DCMVTjzS4BWBAlIaUUpRoFU3oA2gWR0CJ9jhl18sudX2UKGgGaAloD0MIKnPzjehcTkCUhpRSlGgVTegDaBZHQIn7RMURFql1fZQoaAZoCWgPQwjOUx1ys7liQJSGlFKUaBVN6ANoFkdAigFvbXYlIHV9lChoBmgJaA9DCGu3XWiusUdAlIaUUpRoFU3oA2gWR0CKBZ26kIomdX2UKGgGaAloD0MIw9SWOsh3TECUhpRSlGgVTegDaBZHQIoJf4h2W6d1fZQoaAZoCWgPQwilhGBVvTtdQJSGlFKUaBVN6ANoFkdAihX7wrlNlHV9lChoBmgJaA9DCLadtkYEKF5AlIaUUpRoFU3oA2gWR0CKG0ynDR+jdX2UKGgGaAloD0MISwUVVb+xWkCUhpRSlGgVTegDaBZHQIodkrkKeCl1fZQoaAZoCWgPQwjtSPWdX2deQJSGlFKUaBVN6ANoFkdAih3+SB9TgnV9lChoBmgJaA9DCG+cFOa9zGJAlIaUUpRoFU3oA2gWR0CKKkkLQXyidX2UKGgGaAloD0MIHJWbqKUnWkCUhpRSlGgVTegDaBZHQIorrYPGyX51fZQoaAZoCWgPQwiLVBhbCMZfQJSGlFKUaBVN6ANoFkdAijmrs0HhTHV9lChoBmgJaA9DCOF86lglXWBAlIaUUpRoFU3oA2gWR0CKPQ4mTkhidX2UKGgGaAloD0MISQ9Dq5PrW0CUhpRSlGgVTegDaBZHQIo+vU6PsAx1fZQoaAZoCWgPQwjNd/ATB1DzP5SGlFKUaBVLzGgWR0CKQZcdHUc5dX2UKGgGaAloD0MIwJfCg2ZxW0CUhpRSlGgVTegDaBZHQIpCz+R5kbx1fZQoaAZoCWgPQwj8VuvEZY9gQJSGlFKUaBVN6ANoFkdAikNsH0K7ZnV9lChoBmgJaA9DCI3uIHamy1pAlIaUUpRoFU3oA2gWR0CKSoKlYU35dX2UKGgGaAloD0MIRdREn4+fXUCUhpRSlGgVTegDaBZHQIpRMwpON5t1fZQoaAZoCWgPQwjspSkCHBpiQJSGlFKUaBVN6ANoFkdAilPrmyPdVXV9lChoBmgJaA9DCHYZ/tMN7ClAlIaUUpRoFUu8aBZHQIp3N+1Bt1p1fZQoaAZoCWgPQwhPrimQ2Z01QJSGlFKUaBVL+WgWR0CKfmRRuTA4dX2UKGgGaAloD0MIXU90XfgUXUCUhpRSlGgVTegDaBZHQIqDIl8gIQh1fZQoaAZoCWgPQwjwiuB/KxtdQJSGlFKUaBVN6ANoFkdAioyU1IiC8XV9lChoBmgJaA9DCOAQqtTsiVpAlIaUUpRoFU3oA2gWR0CKoAqsEJSjdX2UKGgGaAloD0MIylNW0/VbW0CUhpRSlGgVTegDaBZHQIqgmPV/c351fZQoaAZoCWgPQwjXMa64ONJgQJSGlFKUaBVN6ANoFkdAiqdUhmoR7XV9lChoBmgJaA9DCPDC1mzlz1dAlIaUUpRoFU3oA2gWR0CKsq6V+qiodX2UKGgGaAloD0MIuqEpO/1LXECUhpRSlGgVTegDaBZHQIrHhUHY6GR1fZQoaAZoCWgPQwjrcd9qHfFgQJSGlFKUaBVN6ANoFkdAisgHEl3QlnV9lChoBmgJaA9DCPw07s1v8F5AlIaUUpRoFU3oA2gWR0CK0trpJPIodX2UKGgGaAloD0MI+RIqOLxdVUCUhpRSlGgVTegDaBZHQIrZtucc2it1fZQoaAZoCWgPQwjon+BiRYhfQJSGlFKUaBVN6ANoFkdAit+Gb1AZ9HV9lChoBmgJaA9DCNC52/XSCmJAlIaUUpRoFU3oA2gWR0CK5EFmnO0LdX2UKGgGaAloD0MIDi+ISE3lX0CUhpRSlGgVTegDaBZHQIr0BB7eEZl1fZQoaAZoCWgPQwiNlgM91OdXQJSGlFKUaBVN6ANoFkdAiwIvV3EAHXV9lChoBmgJaA9DCInrGFdcvV5AlIaUUpRoFU3oA2gWR0CLBNOP/7zkdX2UKGgGaAloD0MIixagbTWwWUCUhpRSlGgVTegDaBZHQIsKy0IC2c91fZQoaAZoCWgPQwiaP6a1aQxcQJSGlFKUaBVN6ANoFkdAiwzmkvboKXV9lChoBmgJaA9DCN0KYTWWbl5AlIaUUpRoFU3oA2gWR0CLFB9rGipOdX2UKGgGaAloD0MIDoP5K2RpU0CUhpRSlGgVTegDaBZHQIsXEdeY2Kl1fZQoaAZoCWgPQwi214LeG6FZQJSGlFKUaBVN6ANoFkdAixhjPOY6XHV9lChoBmgJaA9DCPwXCAJkOFlAlIaUUpRoFU3oA2gWR0CLGJ30wrUcdX2UKGgGaAloD0MI1nH8UGkJY0CUhpRSlGgVTegDaBZHQIsgVNahYeV1fZQoaAZoCWgPQwiqJ/OPvtxhQJSGlFKUaBVN6ANoFkdAiyGS2hIvrXV9lChoBmgJaA9DCLJMv0S88mFAlIaUUpRoFU3oA2gWR0CLLhZ0Syt3dX2UKGgGaAloD0MIQiRDjq3eV0CUhpRSlGgVTegDaBZHQIsxGll9Sdh1fZQoaAZoCWgPQwjl7J3RVhVdQJSGlFKUaBVN6ANoFkdAizKrE9+w1XV9lChoBmgJaA9DCFTm5hvRgldAlIaUUpRoFU3oA2gWR0CLNOQXAM2FdX2UKGgGaAloD0MIqDej5qsOVkCUhpRSlGgVTegDaBZHQIs2VAZ88cN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-5.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a29ad98ab315bf25a71c0b782c8ca69f86f796a1b2dd494922f1ec177d8dbf
3
+ size 147906
ppo-LunarLander-v2-5/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-5/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19bed3c820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19bed3c8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19bed3c940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19bed3c9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f19bed3ca60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f19bed3caf0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19bed3cb80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f19bed3cc10>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19bed3cca0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19bed3cd30>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19bed3cdc0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f19bed2fd20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 32,
45
+ "num_timesteps": 1048576,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670521257285560698,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMDazxcvzS6U+hQOw1T9zdFff86dok1tgAAgD8AAIA/TVpQPfasJrqQmaQ7LTcYNZNksroM3RE0AACAPwAAgD/jP4U+KuAEveAJijxjKJK87jdpvrgSWb0AAIA/AACAP11oyT68RcY+2EllPgLgwb6KOGI9OlQIvQAAAAAAAAAAUM5SP9Irh75BK4A6wEdHuR1bK7xQA+e4AACAPwAAgD+wov8+PWlCvRKvUjy+Miu8usyUvQJcDD0AAIA/AAAAABonMj32DGC6icaRu1o1prX5X6G5r2qmOgAAgD8AAIA/egYevo93QD3IYWU+DNOEvlz2Ir0KL1g9AAAAAAAAAABgmz8+S7eVP8bVjz7W4cu+KSmPPnZpyDwAAAAAAAAAAGYCAT24Jtq5Cif2u6R+DzeZFZG7IhWDtgAAgD8AAIA/zemePKRQY7kWjTM8INiqtuu5/rqHmKi1AACAPwAAgD+mdeg9w2kyukYLjDntYSw2KaM/OwLlvbgAAIA/AACAPy0rG748uI4/U1bavtB4m7713Mu9SskIvgAAAAAAAAAAzWvCPClIdLpIw4M7jvasNom7CDqnvpa6AACAPwAAgD8g6o8+BaOdu8jnbbnNJns2IcPSvOkMijgAAIA/AACAP6rcxD6BhDy9L5OUPADlNbx0Igi+dwY3uwAAAAAAAAAAGoWcvSnsDLogqnC84kvFtTpgHbvdpjA1AACAPwAAgD/NPuC9UjjDt3DOvTvv5po4fP8eOjCkb7oAAIA/AACAP4CLJb17pI+6mvPcOZSxObmU/A07rtfRuAAAgD8AAIA/JZKOvvtt2z5T5eo9cWZDvhZF172vHR29AAAAAAAAAABmGnk89oxGujja2rpKQHW2orC1O+OK/TkAAIA/AACAP9qUor32FBy63lrCutX6X7VbCGC6wAPeOQAAgD8AAIA/5g8PvaH0vD8yUua+T02KPgjEMDz3QZg9AAAAAAAAAACwDFu+nlDLPepbkj214XK+/kDIvAAxrj0AAAAAAAAAAFqnfj5vy2U+Pn6lPSxFgL6ETgo9SBEIPgAAAAAAAAAAqp+gPk9ldbwd8ai9QRJeO0T37j3vbAM+AACAPwAAgD+zTDQ9JpeXPkpdU70WIGa+ZYwkvWZvXT0AAAAAAAAAAAYKdT4Bkga9y1ACPl55rTwxV02+oRUWvgAAgD8AAIA/2o4pvqjvpj/0dRa/ksHFvrtarr2+PgK+AAAAAAAAAACgvDC+vIicPmfZjT3qcWu+fbhVvSaw8DwAAAAAAAAAAIA7Ez1Zlqc/cNFtPpdVoL7O4ws9DGSiPQAAAAAAAAAARqOhPsuQGz/i4TI8xmDBvrPzTT0W55i8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFyr/Wl4pKMCUhpRSlIwBbJRLtYwBdJRHQIghMfcN6Pd1fZQoaAZoCWgPQwipaKz9nWpcQJSGlFKUaBVN6ANoFkdAiC4FI/Z/TnV9lChoBmgJaA9DCMS12sNe8V5AlIaUUpRoFU3oA2gWR0CIL2hdt2s8dX2UKGgGaAloD0MIGHrE6LlFBECUhpRSlGgVS8hoFkdAiEEtWluWKXV9lChoBmgJaA9DCP+WAPxT2lpAlIaUUpRoFU3oA2gWR0CIQcBczImxdX2UKGgGaAloD0MIzGPNyCAjVECUhpRSlGgVTegDaBZHQIhIt7hNucd1fZQoaAZoCWgPQwhtNlZinrJYQJSGlFKUaBVN6ANoFkdAiFRdfsu3+nV9lChoBmgJaA9DCAk02NR5TFpAlIaUUpRoFU3oA2gWR0CIad8zAN5MdX2UKGgGaAloD0MI2xZlNsgcTcCUhpRSlGgVS99oFkdAiGpv8Q7LdXV9lChoBmgJaA9DCJBN8iN+x1dAlIaUUpRoFU3oA2gWR0CIbh3Roh6jdX2UKGgGaAloD0MIkdYYdELRX0CUhpRSlGgVTegDaBZHQIh1r04BFNN1fZQoaAZoCWgPQwgo0ZLH031bQJSGlFKUaBVN6ANoFkdAiHzfffoA4nV9lChoBmgJaA9DCOc3TDTILmJAlIaUUpRoFU3oA2gWR0CIguuBczIndX2UKGgGaAloD0MIEW4yqgyMZECUhpRSlGgVTegDaBZHQIiH4FA3T/h1fZQoaAZoCWgPQwjd09Udi99IQJSGlFKUaBVN6ANoFkdAiJiXzDn/1nV9lChoBmgJaA9DCKPogY/BsmFAlIaUUpRoFU3oA2gWR0CIp4gq3EyddX2UKGgGaAloD0MIpaDbSxoJZUCUhpRSlGgVTegDaBZHQIiqdI7Njb11fZQoaAZoCWgPQwj2C3bDNgliQJSGlFKUaBVN6ANoFkdAiKrz9sJpnHV9lChoBmgJaA9DCFFmg0wyzlxAlIaUUpRoFU3oA2gWR0CIq/n9vS+hdX2UKGgGaAloD0MI1lQWhV0QOECUhpRSlGgVS/loFkdAiK3pm29cr3V9lChoBmgJaA9DCOm5ha5EImBAlIaUUpRoFU3oA2gWR0CIsJF5OafBdX2UKGgGaAloD0MIHm6HhsVUYECUhpRSlGgVTegDaBZHQIiyp6+nIhh1fZQoaAZoCWgPQwiTxmgdVfZgQJSGlFKUaBVN6ANoFkdAiLmX2ugYg3V9lChoBmgJaA9DCEp87gT7zFxAlIaUUpRoFU3oA2gWR0CIvHbs4T9LdX2UKGgGaAloD0MIFceBV8uLV0CUhpRSlGgVTegDaBZHQIi9wfhddE91fZQoaAZoCWgPQwj8/WK2ZA0jwJSGlFKUaBVN6ANoFkdAiL34j0L+gnV9lChoBmgJaA9DCD2Zf/TN1WJAlIaUUpRoFU3oA2gWR0CIwPmh/RVqdX2UKGgGaAloD0MIzqrP1VZsXkCUhpRSlGgVTegDaBZHQIjFNWhh6Sl1fZQoaAZoCWgPQwgZrDjVWgtgQJSGlFKUaBVN6ANoFkdAiMZTgl4TsnV9lChoBmgJaA9DCPUSY5l+iRVAlIaUUpRoFUu4aBZHQIkfdlTWGyp1fZQoaAZoCWgPQwg7b2OzI/RZQJSGlFKUaBVN6ANoFkdAiSJcMmWt2nV9lChoBmgJaA9DCHvdIjDWdVlAlIaUUpRoFU3oA2gWR0CJI8kWykbhdX2UKGgGaAloD0MINIKN69+wUECUhpRSlGgVTegDaBZHQIkmzHZK3/h1fZQoaAZoCWgPQwjuztptF3FhQJSGlFKUaBVN6ANoFkdAiSc7O3UhFHV9lChoBmgJaA9DCCwN/KiGffm/lIaUUpRoFUv7aBZHQIktVH8TBZZ1fZQoaAZoCWgPQwiGHjF6btZXQJSGlFKUaBVN6ANoFkdAiTL7K7qY7nV9lChoBmgJaA9DCMEeEynNljZAlIaUUpRoFUvHaBZHQIk1XduYQat1fZQoaAZoCWgPQwio4PCCiO9ZQJSGlFKUaBVN6ANoFkdAiWChGhEjPnV9lChoBmgJaA9DCBctQNvqWGRAlIaUUpRoFU3oA2gWR0CJagY5T6zmdX2UKGgGaAloD0MItFn1uVp4YUCUhpRSlGgVTegDaBZHQIl+AZXMhX91fZQoaAZoCWgPQwh7FoTyPio/QJSGlFKUaBVN6ANoFkdAiX6MasIVunV9lChoBmgJaA9DCD3wMVjx0mJAlIaUUpRoFU3oA2gWR0CJhZeTFERbdX2UKGgGaAloD0MILPUsCOWPXkCUhpRSlGgVTegDaBZHQImRoy9EkSp1fZQoaAZoCWgPQwibVgqBXB5EQJSGlFKUaBVN6ANoFkdAiaeAEdNnG3V9lChoBmgJaA9DCL06x4Ds5F9AlIaUUpRoFU3oA2gWR0CJqArdWQwLdX2UKGgGaAloD0MIXFfMCG/2YUCUhpRSlGgVTegDaBZHQImzfnp0OmR1fZQoaAZoCWgPQwivzcZKzNBSQJSGlFKUaBVN6ANoFkdAibrchkiD/XV9lChoBmgJaA9DCPAZidCI7WFAlIaUUpRoFU3oA2gWR0CJwSZk078vdX2UKGgGaAloD0MIzXaFPlhXW0CUhpRSlGgVTegDaBZHQInGP5N47ih1fZQoaAZoCWgPQwjaxwp+GxJZQJSGlFKUaBVN6ANoFkdAid8SUC7sfXV9lChoBmgJaA9DCMVTjzS4BWBAlIaUUpRoFU3oA2gWR0CJ9jhl18sudX2UKGgGaAloD0MIKnPzjehcTkCUhpRSlGgVTegDaBZHQIn7RMURFql1fZQoaAZoCWgPQwjOUx1ys7liQJSGlFKUaBVN6ANoFkdAigFvbXYlIHV9lChoBmgJaA9DCGu3XWiusUdAlIaUUpRoFU3oA2gWR0CKBZ26kIomdX2UKGgGaAloD0MIw9SWOsh3TECUhpRSlGgVTegDaBZHQIoJf4h2W6d1fZQoaAZoCWgPQwilhGBVvTtdQJSGlFKUaBVN6ANoFkdAihX7wrlNlHV9lChoBmgJaA9DCLadtkYEKF5AlIaUUpRoFU3oA2gWR0CKG0ynDR+jdX2UKGgGaAloD0MISwUVVb+xWkCUhpRSlGgVTegDaBZHQIodkrkKeCl1fZQoaAZoCWgPQwjtSPWdX2deQJSGlFKUaBVN6ANoFkdAih3+SB9TgnV9lChoBmgJaA9DCG+cFOa9zGJAlIaUUpRoFU3oA2gWR0CKKkkLQXyidX2UKGgGaAloD0MIHJWbqKUnWkCUhpRSlGgVTegDaBZHQIorrYPGyX51fZQoaAZoCWgPQwiLVBhbCMZfQJSGlFKUaBVN6ANoFkdAijmrs0HhTHV9lChoBmgJaA9DCOF86lglXWBAlIaUUpRoFU3oA2gWR0CKPQ4mTkhidX2UKGgGaAloD0MISQ9Dq5PrW0CUhpRSlGgVTegDaBZHQIo+vU6PsAx1fZQoaAZoCWgPQwjNd/ATB1DzP5SGlFKUaBVLzGgWR0CKQZcdHUc5dX2UKGgGaAloD0MIwJfCg2ZxW0CUhpRSlGgVTegDaBZHQIpCz+R5kbx1fZQoaAZoCWgPQwj8VuvEZY9gQJSGlFKUaBVN6ANoFkdAikNsH0K7ZnV9lChoBmgJaA9DCI3uIHamy1pAlIaUUpRoFU3oA2gWR0CKSoKlYU35dX2UKGgGaAloD0MIRdREn4+fXUCUhpRSlGgVTegDaBZHQIpRMwpON5t1fZQoaAZoCWgPQwjspSkCHBpiQJSGlFKUaBVN6ANoFkdAilPrmyPdVXV9lChoBmgJaA9DCHYZ/tMN7ClAlIaUUpRoFUu8aBZHQIp3N+1Bt1p1fZQoaAZoCWgPQwhPrimQ2Z01QJSGlFKUaBVL+WgWR0CKfmRRuTA4dX2UKGgGaAloD0MIXU90XfgUXUCUhpRSlGgVTegDaBZHQIqDIl8gIQh1fZQoaAZoCWgPQwjwiuB/KxtdQJSGlFKUaBVN6ANoFkdAioyU1IiC8XV9lChoBmgJaA9DCOAQqtTsiVpAlIaUUpRoFU3oA2gWR0CKoAqsEJSjdX2UKGgGaAloD0MIylNW0/VbW0CUhpRSlGgVTegDaBZHQIqgmPV/c351fZQoaAZoCWgPQwjXMa64ONJgQJSGlFKUaBVN6ANoFkdAiqdUhmoR7XV9lChoBmgJaA9DCPDC1mzlz1dAlIaUUpRoFU3oA2gWR0CKsq6V+qiodX2UKGgGaAloD0MIuqEpO/1LXECUhpRSlGgVTegDaBZHQIrHhUHY6GR1fZQoaAZoCWgPQwjrcd9qHfFgQJSGlFKUaBVN6ANoFkdAisgHEl3QlnV9lChoBmgJaA9DCPw07s1v8F5AlIaUUpRoFU3oA2gWR0CK0trpJPIodX2UKGgGaAloD0MI+RIqOLxdVUCUhpRSlGgVTegDaBZHQIrZtucc2it1fZQoaAZoCWgPQwjon+BiRYhfQJSGlFKUaBVN6ANoFkdAit+Gb1AZ9HV9lChoBmgJaA9DCNC52/XSCmJAlIaUUpRoFU3oA2gWR0CK5EFmnO0LdX2UKGgGaAloD0MIDi+ISE3lX0CUhpRSlGgVTegDaBZHQIr0BB7eEZl1fZQoaAZoCWgPQwiNlgM91OdXQJSGlFKUaBVN6ANoFkdAiwIvV3EAHXV9lChoBmgJaA9DCInrGFdcvV5AlIaUUpRoFU3oA2gWR0CLBNOP/7zkdX2UKGgGaAloD0MIixagbTWwWUCUhpRSlGgVTegDaBZHQIsKy0IC2c91fZQoaAZoCWgPQwiaP6a1aQxcQJSGlFKUaBVN6ANoFkdAiwzmkvboKXV9lChoBmgJaA9DCN0KYTWWbl5AlIaUUpRoFU3oA2gWR0CLFB9rGipOdX2UKGgGaAloD0MIDoP5K2RpU0CUhpRSlGgVTegDaBZHQIsXEdeY2Kl1fZQoaAZoCWgPQwi214LeG6FZQJSGlFKUaBVN6ANoFkdAixhjPOY6XHV9lChoBmgJaA9DCPwXCAJkOFlAlIaUUpRoFU3oA2gWR0CLGJ30wrUcdX2UKGgGaAloD0MI1nH8UGkJY0CUhpRSlGgVTegDaBZHQIsgVNahYeV1fZQoaAZoCWgPQwiqJ/OPvtxhQJSGlFKUaBVN6ANoFkdAiyGS2hIvrXV9lChoBmgJaA9DCLJMv0S88mFAlIaUUpRoFU3oA2gWR0CLLhZ0Syt3dX2UKGgGaAloD0MIQiRDjq3eV0CUhpRSlGgVTegDaBZHQIsxGll9Sdh1fZQoaAZoCWgPQwjl7J3RVhVdQJSGlFKUaBVN6ANoFkdAizKrE9+w1XV9lChoBmgJaA9DCFTm5hvRgldAlIaUUpRoFU3oA2gWR0CLNOQXAM2FdX2UKGgGaAloD0MIqDej5qsOVkCUhpRSlGgVTegDaBZHQIs2VAZ88cN1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 128,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 256,
86
+ "n_epochs": 8,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-5/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd305f8715c85a1d3549f02c20d5be0fbab350c15a1ba5b1abc2596180610200
3
+ size 87929
ppo-LunarLander-v2-5/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39b555cc1b4b3483d3dcaaac2a1a2542eb6b199a25a76c864f24414b81f5f5c6
3
+ size 43201
ppo-LunarLander-v2-5/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-5/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (246 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 186.65532569504768, "std_reward": 74.40638887523595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T18:22:25.934223"}