Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-5.zip +3 -0
- ppo-LunarLander-v2-5/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-5/data +94 -0
- ppo-LunarLander-v2-5/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-5/policy.pth +3 -0
- ppo-LunarLander-v2-5/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-5/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 186.66 +/- 74.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19bed3c820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19bed3c8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19bed3c940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19bed3c9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f19bed3ca60>", "forward": "<function ActorCriticPolicy.forward at 0x7f19bed3caf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19bed3cb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19bed3cc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19bed3cca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19bed3cd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19bed3cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19bed2fd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670521257285560698, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMDazxcvzS6U+hQOw1T9zdFff86dok1tgAAgD8AAIA/TVpQPfasJrqQmaQ7LTcYNZNksroM3RE0AACAPwAAgD/jP4U+KuAEveAJijxjKJK87jdpvrgSWb0AAIA/AACAP11oyT68RcY+2EllPgLgwb6KOGI9OlQIvQAAAAAAAAAAUM5SP9Irh75BK4A6wEdHuR1bK7xQA+e4AACAPwAAgD+wov8+PWlCvRKvUjy+Miu8usyUvQJcDD0AAIA/AAAAABonMj32DGC6icaRu1o1prX5X6G5r2qmOgAAgD8AAIA/egYevo93QD3IYWU+DNOEvlz2Ir0KL1g9AAAAAAAAAABgmz8+S7eVP8bVjz7W4cu+KSmPPnZpyDwAAAAAAAAAAGYCAT24Jtq5Cif2u6R+DzeZFZG7IhWDtgAAgD8AAIA/zemePKRQY7kWjTM8INiqtuu5/rqHmKi1AACAPwAAgD+mdeg9w2kyukYLjDntYSw2KaM/OwLlvbgAAIA/AACAPy0rG748uI4/U1bavtB4m7713Mu9SskIvgAAAAAAAAAAzWvCPClIdLpIw4M7jvasNom7CDqnvpa6AACAPwAAgD8g6o8+BaOdu8jnbbnNJns2IcPSvOkMijgAAIA/AACAP6rcxD6BhDy9L5OUPADlNbx0Igi+dwY3uwAAAAAAAAAAGoWcvSnsDLogqnC84kvFtTpgHbvdpjA1AACAPwAAgD/NPuC9UjjDt3DOvTvv5po4fP8eOjCkb7oAAIA/AACAP4CLJb17pI+6mvPcOZSxObmU/A07rtfRuAAAgD8AAIA/JZKOvvtt2z5T5eo9cWZDvhZF172vHR29AAAAAAAAAABmGnk89oxGujja2rpKQHW2orC1O+OK/TkAAIA/AACAP9qUor32FBy63lrCutX6X7VbCGC6wAPeOQAAgD8AAIA/5g8PvaH0vD8yUua+T02KPgjEMDz3QZg9AAAAAAAAAACwDFu+nlDLPepbkj214XK+/kDIvAAxrj0AAAAAAAAAAFqnfj5vy2U+Pn6lPSxFgL6ETgo9SBEIPgAAAAAAAAAAqp+gPk9ldbwd8ai9QRJeO0T37j3vbAM+AACAPwAAgD+zTDQ9JpeXPkpdU70WIGa+ZYwkvWZvXT0AAAAAAAAAAAYKdT4Bkga9y1ACPl55rTwxV02+oRUWvgAAgD8AAIA/2o4pvqjvpj/0dRa/ksHFvrtarr2+PgK+AAAAAAAAAACgvDC+vIicPmfZjT3qcWu+fbhVvSaw8DwAAAAAAAAAAIA7Ez1Zlqc/cNFtPpdVoL7O4ws9DGSiPQAAAAAAAAAARqOhPsuQGz/i4TI8xmDBvrPzTT0W55i8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFyr/Wl4pKMCUhpRSlIwBbJRLtYwBdJRHQIghMfcN6Pd1fZQoaAZoCWgPQwipaKz9nWpcQJSGlFKUaBVN6ANoFkdAiC4FI/Z/TnV9lChoBmgJaA9DCMS12sNe8V5AlIaUUpRoFU3oA2gWR0CIL2hdt2s8dX2UKGgGaAloD0MIGHrE6LlFBECUhpRSlGgVS8hoFkdAiEEtWluWKXV9lChoBmgJaA9DCP+WAPxT2lpAlIaUUpRoFU3oA2gWR0CIQcBczImxdX2UKGgGaAloD0MIzGPNyCAjVECUhpRSlGgVTegDaBZHQIhIt7hNucd1fZQoaAZoCWgPQwhtNlZinrJYQJSGlFKUaBVN6ANoFkdAiFRdfsu3+nV9lChoBmgJaA9DCAk02NR5TFpAlIaUUpRoFU3oA2gWR0CIad8zAN5MdX2UKGgGaAloD0MI2xZlNsgcTcCUhpRSlGgVS99oFkdAiGpv8Q7LdXV9lChoBmgJaA9DCJBN8iN+x1dAlIaUUpRoFU3oA2gWR0CIbh3Roh6jdX2UKGgGaAloD0MIkdYYdELRX0CUhpRSlGgVTegDaBZHQIh1r04BFNN1fZQoaAZoCWgPQwgo0ZLH031bQJSGlFKUaBVN6ANoFkdAiHzfffoA4nV9lChoBmgJaA9DCOc3TDTILmJAlIaUUpRoFU3oA2gWR0CIguuBczIndX2UKGgGaAloD0MIEW4yqgyMZECUhpRSlGgVTegDaBZHQIiH4FA3T/h1fZQoaAZoCWgPQwjd09Udi99IQJSGlFKUaBVN6ANoFkdAiJiXzDn/1nV9lChoBmgJaA9DCKPogY/BsmFAlIaUUpRoFU3oA2gWR0CIp4gq3EyddX2UKGgGaAloD0MIpaDbSxoJZUCUhpRSlGgVTegDaBZHQIiqdI7Njb11fZQoaAZoCWgPQwj2C3bDNgliQJSGlFKUaBVN6ANoFkdAiKrz9sJpnHV9lChoBmgJaA9DCFFmg0wyzlxAlIaUUpRoFU3oA2gWR0CIq/n9vS+hdX2UKGgGaAloD0MI1lQWhV0QOECUhpRSlGgVS/loFkdAiK3pm29cr3V9lChoBmgJaA9DCOm5ha5EImBAlIaUUpRoFU3oA2gWR0CIsJF5OafBdX2UKGgGaAloD0MIHm6HhsVUYECUhpRSlGgVTegDaBZHQIiyp6+nIhh1fZQoaAZoCWgPQwiTxmgdVfZgQJSGlFKUaBVN6ANoFkdAiLmX2ugYg3V9lChoBmgJaA9DCEp87gT7zFxAlIaUUpRoFU3oA2gWR0CIvHbs4T9LdX2UKGgGaAloD0MIFceBV8uLV0CUhpRSlGgVTegDaBZHQIi9wfhddE91fZQoaAZoCWgPQwj8/WK2ZA0jwJSGlFKUaBVN6ANoFkdAiL34j0L+gnV9lChoBmgJaA9DCD2Zf/TN1WJAlIaUUpRoFU3oA2gWR0CIwPmh/RVqdX2UKGgGaAloD0MIzqrP1VZsXkCUhpRSlGgVTegDaBZHQIjFNWhh6Sl1fZQoaAZoCWgPQwgZrDjVWgtgQJSGlFKUaBVN6ANoFkdAiMZTgl4TsnV9lChoBmgJaA9DCPUSY5l+iRVAlIaUUpRoFUu4aBZHQIkfdlTWGyp1fZQoaAZoCWgPQwg7b2OzI/RZQJSGlFKUaBVN6ANoFkdAiSJcMmWt2nV9lChoBmgJaA9DCHvdIjDWdVlAlIaUUpRoFU3oA2gWR0CJI8kWykbhdX2UKGgGaAloD0MINIKN69+wUECUhpRSlGgVTegDaBZHQIkmzHZK3/h1fZQoaAZoCWgPQwjuztptF3FhQJSGlFKUaBVN6ANoFkdAiSc7O3UhFHV9lChoBmgJaA9DCCwN/KiGffm/lIaUUpRoFUv7aBZHQIktVH8TBZZ1fZQoaAZoCWgPQwiGHjF6btZXQJSGlFKUaBVN6ANoFkdAiTL7K7qY7nV9lChoBmgJaA9DCMEeEynNljZAlIaUUpRoFUvHaBZHQIk1XduYQat1fZQoaAZoCWgPQwio4PCCiO9ZQJSGlFKUaBVN6ANoFkdAiWChGhEjPnV9lChoBmgJaA9DCBctQNvqWGRAlIaUUpRoFU3oA2gWR0CJagY5T6zmdX2UKGgGaAloD0MItFn1uVp4YUCUhpRSlGgVTegDaBZHQIl+AZXMhX91fZQoaAZoCWgPQwh7FoTyPio/QJSGlFKUaBVN6ANoFkdAiX6MasIVunV9lChoBmgJaA9DCD3wMVjx0mJAlIaUUpRoFU3oA2gWR0CJhZeTFERbdX2UKGgGaAloD0MILPUsCOWPXkCUhpRSlGgVTegDaBZHQImRoy9EkSp1fZQoaAZoCWgPQwibVgqBXB5EQJSGlFKUaBVN6ANoFkdAiaeAEdNnG3V9lChoBmgJaA9DCL06x4Ds5F9AlIaUUpRoFU3oA2gWR0CJqArdWQwLdX2UKGgGaAloD0MIXFfMCG/2YUCUhpRSlGgVTegDaBZHQImzfnp0OmR1fZQoaAZoCWgPQwivzcZKzNBSQJSGlFKUaBVN6ANoFkdAibrchkiD/XV9lChoBmgJaA9DCPAZidCI7WFAlIaUUpRoFU3oA2gWR0CJwSZk078vdX2UKGgGaAloD0MIzXaFPlhXW0CUhpRSlGgVTegDaBZHQInGP5N47ih1fZQoaAZoCWgPQwjaxwp+GxJZQJSGlFKUaBVN6ANoFkdAid8SUC7sfXV9lChoBmgJaA9DCMVTjzS4BWBAlIaUUpRoFU3oA2gWR0CJ9jhl18sudX2UKGgGaAloD0MIKnPzjehcTkCUhpRSlGgVTegDaBZHQIn7RMURFql1fZQoaAZoCWgPQwjOUx1ys7liQJSGlFKUaBVN6ANoFkdAigFvbXYlIHV9lChoBmgJaA9DCGu3XWiusUdAlIaUUpRoFU3oA2gWR0CKBZ26kIomdX2UKGgGaAloD0MIw9SWOsh3TECUhpRSlGgVTegDaBZHQIoJf4h2W6d1fZQoaAZoCWgPQwilhGBVvTtdQJSGlFKUaBVN6ANoFkdAihX7wrlNlHV9lChoBmgJaA9DCLadtkYEKF5AlIaUUpRoFU3oA2gWR0CKG0ynDR+jdX2UKGgGaAloD0MISwUVVb+xWkCUhpRSlGgVTegDaBZHQIodkrkKeCl1fZQoaAZoCWgPQwjtSPWdX2deQJSGlFKUaBVN6ANoFkdAih3+SB9TgnV9lChoBmgJaA9DCG+cFOa9zGJAlIaUUpRoFU3oA2gWR0CKKkkLQXyidX2UKGgGaAloD0MIHJWbqKUnWkCUhpRSlGgVTegDaBZHQIorrYPGyX51fZQoaAZoCWgPQwiLVBhbCMZfQJSGlFKUaBVN6ANoFkdAijmrs0HhTHV9lChoBmgJaA9DCOF86lglXWBAlIaUUpRoFU3oA2gWR0CKPQ4mTkhidX2UKGgGaAloD0MISQ9Dq5PrW0CUhpRSlGgVTegDaBZHQIo+vU6PsAx1fZQoaAZoCWgPQwjNd/ATB1DzP5SGlFKUaBVLzGgWR0CKQZcdHUc5dX2UKGgGaAloD0MIwJfCg2ZxW0CUhpRSlGgVTegDaBZHQIpCz+R5kbx1fZQoaAZoCWgPQwj8VuvEZY9gQJSGlFKUaBVN6ANoFkdAikNsH0K7ZnV9lChoBmgJaA9DCI3uIHamy1pAlIaUUpRoFU3oA2gWR0CKSoKlYU35dX2UKGgGaAloD0MIRdREn4+fXUCUhpRSlGgVTegDaBZHQIpRMwpON5t1fZQoaAZoCWgPQwjspSkCHBpiQJSGlFKUaBVN6ANoFkdAilPrmyPdVXV9lChoBmgJaA9DCHYZ/tMN7ClAlIaUUpRoFUu8aBZHQIp3N+1Bt1p1fZQoaAZoCWgPQwhPrimQ2Z01QJSGlFKUaBVL+WgWR0CKfmRRuTA4dX2UKGgGaAloD0MIXU90XfgUXUCUhpRSlGgVTegDaBZHQIqDIl8gIQh1fZQoaAZoCWgPQwjwiuB/KxtdQJSGlFKUaBVN6ANoFkdAioyU1IiC8XV9lChoBmgJaA9DCOAQqtTsiVpAlIaUUpRoFU3oA2gWR0CKoAqsEJSjdX2UKGgGaAloD0MIylNW0/VbW0CUhpRSlGgVTegDaBZHQIqgmPV/c351fZQoaAZoCWgPQwjXMa64ONJgQJSGlFKUaBVN6ANoFkdAiqdUhmoR7XV9lChoBmgJaA9DCPDC1mzlz1dAlIaUUpRoFU3oA2gWR0CKsq6V+qiodX2UKGgGaAloD0MIuqEpO/1LXECUhpRSlGgVTegDaBZHQIrHhUHY6GR1fZQoaAZoCWgPQwjrcd9qHfFgQJSGlFKUaBVN6ANoFkdAisgHEl3QlnV9lChoBmgJaA9DCPw07s1v8F5AlIaUUpRoFU3oA2gWR0CK0trpJPIodX2UKGgGaAloD0MI+RIqOLxdVUCUhpRSlGgVTegDaBZHQIrZtucc2it1fZQoaAZoCWgPQwjon+BiRYhfQJSGlFKUaBVN6ANoFkdAit+Gb1AZ9HV9lChoBmgJaA9DCNC52/XSCmJAlIaUUpRoFU3oA2gWR0CK5EFmnO0LdX2UKGgGaAloD0MIDi+ISE3lX0CUhpRSlGgVTegDaBZHQIr0BB7eEZl1fZQoaAZoCWgPQwiNlgM91OdXQJSGlFKUaBVN6ANoFkdAiwIvV3EAHXV9lChoBmgJaA9DCInrGFdcvV5AlIaUUpRoFU3oA2gWR0CLBNOP/7zkdX2UKGgGaAloD0MIixagbTWwWUCUhpRSlGgVTegDaBZHQIsKy0IC2c91fZQoaAZoCWgPQwiaP6a1aQxcQJSGlFKUaBVN6ANoFkdAiwzmkvboKXV9lChoBmgJaA9DCN0KYTWWbl5AlIaUUpRoFU3oA2gWR0CLFB9rGipOdX2UKGgGaAloD0MIDoP5K2RpU0CUhpRSlGgVTegDaBZHQIsXEdeY2Kl1fZQoaAZoCWgPQwi214LeG6FZQJSGlFKUaBVN6ANoFkdAixhjPOY6XHV9lChoBmgJaA9DCPwXCAJkOFlAlIaUUpRoFU3oA2gWR0CLGJ30wrUcdX2UKGgGaAloD0MI1nH8UGkJY0CUhpRSlGgVTegDaBZHQIsgVNahYeV1fZQoaAZoCWgPQwiqJ/OPvtxhQJSGlFKUaBVN6ANoFkdAiyGS2hIvrXV9lChoBmgJaA9DCLJMv0S88mFAlIaUUpRoFU3oA2gWR0CLLhZ0Syt3dX2UKGgGaAloD0MIQiRDjq3eV0CUhpRSlGgVTegDaBZHQIsxGll9Sdh1fZQoaAZoCWgPQwjl7J3RVhVdQJSGlFKUaBVN6ANoFkdAizKrE9+w1XV9lChoBmgJaA9DCFTm5hvRgldAlIaUUpRoFU3oA2gWR0CLNOQXAM2FdX2UKGgGaAloD0MIqDej5qsOVkCUhpRSlGgVTegDaBZHQIs2VAZ88cN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-5.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45a29ad98ab315bf25a71c0b782c8ca69f86f796a1b2dd494922f1ec177d8dbf
|
3 |
+
size 147906
|
ppo-LunarLander-v2-5/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-5/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f19bed3c820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19bed3c8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19bed3c940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19bed3c9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f19bed3ca60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f19bed3caf0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19bed3cb80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f19bed3cc10>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19bed3cca0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19bed3cd30>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19bed3cdc0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f19bed2fd20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 1048576,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670521257285560698,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADMDazxcvzS6U+hQOw1T9zdFff86dok1tgAAgD8AAIA/TVpQPfasJrqQmaQ7LTcYNZNksroM3RE0AACAPwAAgD/jP4U+KuAEveAJijxjKJK87jdpvrgSWb0AAIA/AACAP11oyT68RcY+2EllPgLgwb6KOGI9OlQIvQAAAAAAAAAAUM5SP9Irh75BK4A6wEdHuR1bK7xQA+e4AACAPwAAgD+wov8+PWlCvRKvUjy+Miu8usyUvQJcDD0AAIA/AAAAABonMj32DGC6icaRu1o1prX5X6G5r2qmOgAAgD8AAIA/egYevo93QD3IYWU+DNOEvlz2Ir0KL1g9AAAAAAAAAABgmz8+S7eVP8bVjz7W4cu+KSmPPnZpyDwAAAAAAAAAAGYCAT24Jtq5Cif2u6R+DzeZFZG7IhWDtgAAgD8AAIA/zemePKRQY7kWjTM8INiqtuu5/rqHmKi1AACAPwAAgD+mdeg9w2kyukYLjDntYSw2KaM/OwLlvbgAAIA/AACAPy0rG748uI4/U1bavtB4m7713Mu9SskIvgAAAAAAAAAAzWvCPClIdLpIw4M7jvasNom7CDqnvpa6AACAPwAAgD8g6o8+BaOdu8jnbbnNJns2IcPSvOkMijgAAIA/AACAP6rcxD6BhDy9L5OUPADlNbx0Igi+dwY3uwAAAAAAAAAAGoWcvSnsDLogqnC84kvFtTpgHbvdpjA1AACAPwAAgD/NPuC9UjjDt3DOvTvv5po4fP8eOjCkb7oAAIA/AACAP4CLJb17pI+6mvPcOZSxObmU/A07rtfRuAAAgD8AAIA/JZKOvvtt2z5T5eo9cWZDvhZF172vHR29AAAAAAAAAABmGnk89oxGujja2rpKQHW2orC1O+OK/TkAAIA/AACAP9qUor32FBy63lrCutX6X7VbCGC6wAPeOQAAgD8AAIA/5g8PvaH0vD8yUua+T02KPgjEMDz3QZg9AAAAAAAAAACwDFu+nlDLPepbkj214XK+/kDIvAAxrj0AAAAAAAAAAFqnfj5vy2U+Pn6lPSxFgL6ETgo9SBEIPgAAAAAAAAAAqp+gPk9ldbwd8ai9QRJeO0T37j3vbAM+AACAPwAAgD+zTDQ9JpeXPkpdU70WIGa+ZYwkvWZvXT0AAAAAAAAAAAYKdT4Bkga9y1ACPl55rTwxV02+oRUWvgAAgD8AAIA/2o4pvqjvpj/0dRa/ksHFvrtarr2+PgK+AAAAAAAAAACgvDC+vIicPmfZjT3qcWu+fbhVvSaw8DwAAAAAAAAAAIA7Ez1Zlqc/cNFtPpdVoL7O4ws9DGSiPQAAAAAAAAAARqOhPsuQGz/i4TI8xmDBvrPzTT0W55i8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFyr/Wl4pKMCUhpRSlIwBbJRLtYwBdJRHQIghMfcN6Pd1fZQoaAZoCWgPQwipaKz9nWpcQJSGlFKUaBVN6ANoFkdAiC4FI/Z/TnV9lChoBmgJaA9DCMS12sNe8V5AlIaUUpRoFU3oA2gWR0CIL2hdt2s8dX2UKGgGaAloD0MIGHrE6LlFBECUhpRSlGgVS8hoFkdAiEEtWluWKXV9lChoBmgJaA9DCP+WAPxT2lpAlIaUUpRoFU3oA2gWR0CIQcBczImxdX2UKGgGaAloD0MIzGPNyCAjVECUhpRSlGgVTegDaBZHQIhIt7hNucd1fZQoaAZoCWgPQwhtNlZinrJYQJSGlFKUaBVN6ANoFkdAiFRdfsu3+nV9lChoBmgJaA9DCAk02NR5TFpAlIaUUpRoFU3oA2gWR0CIad8zAN5MdX2UKGgGaAloD0MI2xZlNsgcTcCUhpRSlGgVS99oFkdAiGpv8Q7LdXV9lChoBmgJaA9DCJBN8iN+x1dAlIaUUpRoFU3oA2gWR0CIbh3Roh6jdX2UKGgGaAloD0MIkdYYdELRX0CUhpRSlGgVTegDaBZHQIh1r04BFNN1fZQoaAZoCWgPQwgo0ZLH031bQJSGlFKUaBVN6ANoFkdAiHzfffoA4nV9lChoBmgJaA9DCOc3TDTILmJAlIaUUpRoFU3oA2gWR0CIguuBczIndX2UKGgGaAloD0MIEW4yqgyMZECUhpRSlGgVTegDaBZHQIiH4FA3T/h1fZQoaAZoCWgPQwjd09Udi99IQJSGlFKUaBVN6ANoFkdAiJiXzDn/1nV9lChoBmgJaA9DCKPogY/BsmFAlIaUUpRoFU3oA2gWR0CIp4gq3EyddX2UKGgGaAloD0MIpaDbSxoJZUCUhpRSlGgVTegDaBZHQIiqdI7Njb11fZQoaAZoCWgPQwj2C3bDNgliQJSGlFKUaBVN6ANoFkdAiKrz9sJpnHV9lChoBmgJaA9DCFFmg0wyzlxAlIaUUpRoFU3oA2gWR0CIq/n9vS+hdX2UKGgGaAloD0MI1lQWhV0QOECUhpRSlGgVS/loFkdAiK3pm29cr3V9lChoBmgJaA9DCOm5ha5EImBAlIaUUpRoFU3oA2gWR0CIsJF5OafBdX2UKGgGaAloD0MIHm6HhsVUYECUhpRSlGgVTegDaBZHQIiyp6+nIhh1fZQoaAZoCWgPQwiTxmgdVfZgQJSGlFKUaBVN6ANoFkdAiLmX2ugYg3V9lChoBmgJaA9DCEp87gT7zFxAlIaUUpRoFU3oA2gWR0CIvHbs4T9LdX2UKGgGaAloD0MIFceBV8uLV0CUhpRSlGgVTegDaBZHQIi9wfhddE91fZQoaAZoCWgPQwj8/WK2ZA0jwJSGlFKUaBVN6ANoFkdAiL34j0L+gnV9lChoBmgJaA9DCD2Zf/TN1WJAlIaUUpRoFU3oA2gWR0CIwPmh/RVqdX2UKGgGaAloD0MIzqrP1VZsXkCUhpRSlGgVTegDaBZHQIjFNWhh6Sl1fZQoaAZoCWgPQwgZrDjVWgtgQJSGlFKUaBVN6ANoFkdAiMZTgl4TsnV9lChoBmgJaA9DCPUSY5l+iRVAlIaUUpRoFUu4aBZHQIkfdlTWGyp1fZQoaAZoCWgPQwg7b2OzI/RZQJSGlFKUaBVN6ANoFkdAiSJcMmWt2nV9lChoBmgJaA9DCHvdIjDWdVlAlIaUUpRoFU3oA2gWR0CJI8kWykbhdX2UKGgGaAloD0MINIKN69+wUECUhpRSlGgVTegDaBZHQIkmzHZK3/h1fZQoaAZoCWgPQwjuztptF3FhQJSGlFKUaBVN6ANoFkdAiSc7O3UhFHV9lChoBmgJaA9DCCwN/KiGffm/lIaUUpRoFUv7aBZHQIktVH8TBZZ1fZQoaAZoCWgPQwiGHjF6btZXQJSGlFKUaBVN6ANoFkdAiTL7K7qY7nV9lChoBmgJaA9DCMEeEynNljZAlIaUUpRoFUvHaBZHQIk1XduYQat1fZQoaAZoCWgPQwio4PCCiO9ZQJSGlFKUaBVN6ANoFkdAiWChGhEjPnV9lChoBmgJaA9DCBctQNvqWGRAlIaUUpRoFU3oA2gWR0CJagY5T6zmdX2UKGgGaAloD0MItFn1uVp4YUCUhpRSlGgVTegDaBZHQIl+AZXMhX91fZQoaAZoCWgPQwh7FoTyPio/QJSGlFKUaBVN6ANoFkdAiX6MasIVunV9lChoBmgJaA9DCD3wMVjx0mJAlIaUUpRoFU3oA2gWR0CJhZeTFERbdX2UKGgGaAloD0MILPUsCOWPXkCUhpRSlGgVTegDaBZHQImRoy9EkSp1fZQoaAZoCWgPQwibVgqBXB5EQJSGlFKUaBVN6ANoFkdAiaeAEdNnG3V9lChoBmgJaA9DCL06x4Ds5F9AlIaUUpRoFU3oA2gWR0CJqArdWQwLdX2UKGgGaAloD0MIXFfMCG/2YUCUhpRSlGgVTegDaBZHQImzfnp0OmR1fZQoaAZoCWgPQwivzcZKzNBSQJSGlFKUaBVN6ANoFkdAibrchkiD/XV9lChoBmgJaA9DCPAZidCI7WFAlIaUUpRoFU3oA2gWR0CJwSZk078vdX2UKGgGaAloD0MIzXaFPlhXW0CUhpRSlGgVTegDaBZHQInGP5N47ih1fZQoaAZoCWgPQwjaxwp+GxJZQJSGlFKUaBVN6ANoFkdAid8SUC7sfXV9lChoBmgJaA9DCMVTjzS4BWBAlIaUUpRoFU3oA2gWR0CJ9jhl18sudX2UKGgGaAloD0MIKnPzjehcTkCUhpRSlGgVTegDaBZHQIn7RMURFql1fZQoaAZoCWgPQwjOUx1ys7liQJSGlFKUaBVN6ANoFkdAigFvbXYlIHV9lChoBmgJaA9DCGu3XWiusUdAlIaUUpRoFU3oA2gWR0CKBZ26kIomdX2UKGgGaAloD0MIw9SWOsh3TECUhpRSlGgVTegDaBZHQIoJf4h2W6d1fZQoaAZoCWgPQwilhGBVvTtdQJSGlFKUaBVN6ANoFkdAihX7wrlNlHV9lChoBmgJaA9DCLadtkYEKF5AlIaUUpRoFU3oA2gWR0CKG0ynDR+jdX2UKGgGaAloD0MISwUVVb+xWkCUhpRSlGgVTegDaBZHQIodkrkKeCl1fZQoaAZoCWgPQwjtSPWdX2deQJSGlFKUaBVN6ANoFkdAih3+SB9TgnV9lChoBmgJaA9DCG+cFOa9zGJAlIaUUpRoFU3oA2gWR0CKKkkLQXyidX2UKGgGaAloD0MIHJWbqKUnWkCUhpRSlGgVTegDaBZHQIorrYPGyX51fZQoaAZoCWgPQwiLVBhbCMZfQJSGlFKUaBVN6ANoFkdAijmrs0HhTHV9lChoBmgJaA9DCOF86lglXWBAlIaUUpRoFU3oA2gWR0CKPQ4mTkhidX2UKGgGaAloD0MISQ9Dq5PrW0CUhpRSlGgVTegDaBZHQIo+vU6PsAx1fZQoaAZoCWgPQwjNd/ATB1DzP5SGlFKUaBVLzGgWR0CKQZcdHUc5dX2UKGgGaAloD0MIwJfCg2ZxW0CUhpRSlGgVTegDaBZHQIpCz+R5kbx1fZQoaAZoCWgPQwj8VuvEZY9gQJSGlFKUaBVN6ANoFkdAikNsH0K7ZnV9lChoBmgJaA9DCI3uIHamy1pAlIaUUpRoFU3oA2gWR0CKSoKlYU35dX2UKGgGaAloD0MIRdREn4+fXUCUhpRSlGgVTegDaBZHQIpRMwpON5t1fZQoaAZoCWgPQwjspSkCHBpiQJSGlFKUaBVN6ANoFkdAilPrmyPdVXV9lChoBmgJaA9DCHYZ/tMN7ClAlIaUUpRoFUu8aBZHQIp3N+1Bt1p1fZQoaAZoCWgPQwhPrimQ2Z01QJSGlFKUaBVL+WgWR0CKfmRRuTA4dX2UKGgGaAloD0MIXU90XfgUXUCUhpRSlGgVTegDaBZHQIqDIl8gIQh1fZQoaAZoCWgPQwjwiuB/KxtdQJSGlFKUaBVN6ANoFkdAioyU1IiC8XV9lChoBmgJaA9DCOAQqtTsiVpAlIaUUpRoFU3oA2gWR0CKoAqsEJSjdX2UKGgGaAloD0MIylNW0/VbW0CUhpRSlGgVTegDaBZHQIqgmPV/c351fZQoaAZoCWgPQwjXMa64ONJgQJSGlFKUaBVN6ANoFkdAiqdUhmoR7XV9lChoBmgJaA9DCPDC1mzlz1dAlIaUUpRoFU3oA2gWR0CKsq6V+qiodX2UKGgGaAloD0MIuqEpO/1LXECUhpRSlGgVTegDaBZHQIrHhUHY6GR1fZQoaAZoCWgPQwjrcd9qHfFgQJSGlFKUaBVN6ANoFkdAisgHEl3QlnV9lChoBmgJaA9DCPw07s1v8F5AlIaUUpRoFU3oA2gWR0CK0trpJPIodX2UKGgGaAloD0MI+RIqOLxdVUCUhpRSlGgVTegDaBZHQIrZtucc2it1fZQoaAZoCWgPQwjon+BiRYhfQJSGlFKUaBVN6ANoFkdAit+Gb1AZ9HV9lChoBmgJaA9DCNC52/XSCmJAlIaUUpRoFU3oA2gWR0CK5EFmnO0LdX2UKGgGaAloD0MIDi+ISE3lX0CUhpRSlGgVTegDaBZHQIr0BB7eEZl1fZQoaAZoCWgPQwiNlgM91OdXQJSGlFKUaBVN6ANoFkdAiwIvV3EAHXV9lChoBmgJaA9DCInrGFdcvV5AlIaUUpRoFU3oA2gWR0CLBNOP/7zkdX2UKGgGaAloD0MIixagbTWwWUCUhpRSlGgVTegDaBZHQIsKy0IC2c91fZQoaAZoCWgPQwiaP6a1aQxcQJSGlFKUaBVN6ANoFkdAiwzmkvboKXV9lChoBmgJaA9DCN0KYTWWbl5AlIaUUpRoFU3oA2gWR0CLFB9rGipOdX2UKGgGaAloD0MIDoP5K2RpU0CUhpRSlGgVTegDaBZHQIsXEdeY2Kl1fZQoaAZoCWgPQwi214LeG6FZQJSGlFKUaBVN6ANoFkdAixhjPOY6XHV9lChoBmgJaA9DCPwXCAJkOFlAlIaUUpRoFU3oA2gWR0CLGJ30wrUcdX2UKGgGaAloD0MI1nH8UGkJY0CUhpRSlGgVTegDaBZHQIsgVNahYeV1fZQoaAZoCWgPQwiqJ/OPvtxhQJSGlFKUaBVN6ANoFkdAiyGS2hIvrXV9lChoBmgJaA9DCLJMv0S88mFAlIaUUpRoFU3oA2gWR0CLLhZ0Syt3dX2UKGgGaAloD0MIQiRDjq3eV0CUhpRSlGgVTegDaBZHQIsxGll9Sdh1fZQoaAZoCWgPQwjl7J3RVhVdQJSGlFKUaBVN6ANoFkdAizKrE9+w1XV9lChoBmgJaA9DCFTm5hvRgldAlIaUUpRoFU3oA2gWR0CLNOQXAM2FdX2UKGgGaAloD0MIqDej5qsOVkCUhpRSlGgVTegDaBZHQIs2VAZ88cN1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 128,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-5/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd305f8715c85a1d3549f02c20d5be0fbab350c15a1ba5b1abc2596180610200
|
3 |
+
size 87929
|
ppo-LunarLander-v2-5/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39b555cc1b4b3483d3dcaaac2a1a2542eb6b199a25a76c864f24414b81f5f5c6
|
3 |
+
size 43201
|
ppo-LunarLander-v2-5/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-5/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (246 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 186.65532569504768, "std_reward": 74.40638887523595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T18:22:25.934223"}
|