--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner4invoice12 results: [] --- # bert-finetuned-ner4invoice12 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2330 - Precision: 0.1905 - Recall: 0.2609 - F1: 0.2202 - Accuracy: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 14 | 0.5105 | 0.0 | 0.0 | 0.0 | 0.8892 | | No log | 2.0 | 28 | 0.2856 | 0.0566 | 0.0652 | 0.0606 | 0.9234 | | No log | 3.0 | 42 | 0.2330 | 0.1905 | 0.2609 | 0.2202 | 0.9241 | ### Framework versions - Transformers 4.42.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1