jiajunlong
commited on
Commit
•
e7dfeb6
1
Parent(s):
f351ec3
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
---
|
5 |
+
### TinyLLaVA
|
6 |
+
|
7 |
+
We have released two multimodal large models smaller than 1B, and the inference speed of both models on CPU is very fast.
|
8 |
+
|
9 |
+
See the list below for the details of each model:
|
10 |
+
|
11 |
+
- [TinyLLaVA-0.55B](https://huggingface.co/jiajunlong/TinyLLaVA-0.55B)
|
12 |
+
- [TinyLLaVA-0.89B](https://huggingface.co/jiajunlong/TinyLLaVA-0.89B)
|
13 |
+
|
14 |
+
### Usage
|
15 |
+
|
16 |
+
1. you can download the generate file "generate_model.py"
|
17 |
+
2. running the following command:
|
18 |
+
|
19 |
+
```bash
|
20 |
+
python generate_model --model [MODEL_NAME] --prompt 'you want to ask' --image '/path/to/related/image'
|
21 |
+
```
|
22 |
+
|
23 |
+
or execute the following test code:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
27 |
+
from generate_model import *
|
28 |
+
model = AutoModelForCausalLM.from_pretrained("jiajunlong/TinyLLaVA-0.55B", trust_remote_code=True)
|
29 |
+
config = model.config
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("jiajunlong/TinyLLaVA-0.55B", use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
|
31 |
+
prompt="what is umusual about this image?"
|
32 |
+
image="joke.png"
|
33 |
+
output_text, genertaion_time = generate(prompt=prompt, image=image, model=model, tokenizer=tokenizer)
|
34 |
+
print_txt = (
|
35 |
+
f'\r\n{"=" * os.get_terminal_size().columns}\r\n'
|
36 |
+
'\033[1m Prompt + Generated Output\033[0m\r\n'
|
37 |
+
f'{"-" * os.get_terminal_size().columns}\r\n'
|
38 |
+
f'{output_text}\r\n'
|
39 |
+
f'{"-" * os.get_terminal_size().columns}\r\n'
|
40 |
+
'\r\nGeneration took'
|
41 |
+
f'\033[1m\033[92m {round(genertaion_time, 2)} \033[0m'
|
42 |
+
'seconds.\r\n'
|
43 |
+
)
|
44 |
+
print(print_txt)
|
45 |
+
```
|
46 |
+
|
47 |
+
### Result
|
48 |
+
|
49 |
+
| model_name | gqa | textvqa | sqa | vqav2 | MME | MMB | MM-VET | GPU | CPU |
|
50 |
+
| :----------------------------------------------------------: | ----- | ------- | ----- | ----- | ------- | ----- | ------ | -------------- | ---------- |
|
51 |
+
| [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.3 | 51.7 | 60.3 | 76.9 | 1276.5 | 55.2 | 25.8 | 11.9 it/s | 0.35 it/s |
|
52 |
+
| [TinyLLaVA-0.55B](https://huggingface.co/jiajunlong/TinyLLaVA-0.55B) | 53.87 | 44.02 | 54.09 | 71.74 | 1118.75 | 37.8 | 20 | 11.0 it/s | 0.67 it/s |
|
53 |
+
| [TinyLLaVA-0.89B](https://huggingface.co/jiajunlong/TinyLLaVA-0.89B) | 50.38 | 36.37 | 50.02 | 65.44 | 1056.69 | 26.29 | 15.4 | **14.35 it/s** | **2 it/s** |
|
54 |
+
|