Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: dmis-lab/biobert-v1.1
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: biobert-all-deep
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# biobert-all-deep
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8095
|
23 |
+
- Precision: 0.6591
|
24 |
+
- Recall: 0.7116
|
25 |
+
- F1: 0.6843
|
26 |
+
- Accuracy: 0.8236
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 363 | 0.5639 | 0.5973 | 0.6865 | 0.6388 | 0.8149 |
|
58 |
+
| 0.6983 | 2.0 | 726 | 0.5410 | 0.6263 | 0.7052 | 0.6634 | 0.8238 |
|
59 |
+
| 0.3859 | 3.0 | 1089 | 0.5557 | 0.6544 | 0.7011 | 0.6769 | 0.8245 |
|
60 |
+
| 0.3859 | 4.0 | 1452 | 0.5803 | 0.6579 | 0.7064 | 0.6813 | 0.8276 |
|
61 |
+
| 0.276 | 5.0 | 1815 | 0.6461 | 0.6598 | 0.7105 | 0.6842 | 0.8238 |
|
62 |
+
| 0.1944 | 6.0 | 2178 | 0.6995 | 0.6616 | 0.7120 | 0.6859 | 0.8237 |
|
63 |
+
| 0.1505 | 7.0 | 2541 | 0.7337 | 0.6563 | 0.7195 | 0.6865 | 0.8253 |
|
64 |
+
| 0.1505 | 8.0 | 2904 | 0.7710 | 0.6664 | 0.7120 | 0.6884 | 0.8255 |
|
65 |
+
| 0.1178 | 9.0 | 3267 | 0.8030 | 0.6541 | 0.7165 | 0.6838 | 0.8233 |
|
66 |
+
| 0.1006 | 10.0 | 3630 | 0.8095 | 0.6591 | 0.7116 | 0.6843 | 0.8236 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.40.1
|
72 |
+
- Pytorch 2.2.1+cu121
|
73 |
+
- Datasets 2.19.1
|
74 |
+
- Tokenizers 0.19.1
|