--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-all-deep results: [] --- # biobert-all-deep This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8095 - Precision: 0.6591 - Recall: 0.7116 - F1: 0.6843 - Accuracy: 0.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 363 | 0.5639 | 0.5973 | 0.6865 | 0.6388 | 0.8149 | | 0.6983 | 2.0 | 726 | 0.5410 | 0.6263 | 0.7052 | 0.6634 | 0.8238 | | 0.3859 | 3.0 | 1089 | 0.5557 | 0.6544 | 0.7011 | 0.6769 | 0.8245 | | 0.3859 | 4.0 | 1452 | 0.5803 | 0.6579 | 0.7064 | 0.6813 | 0.8276 | | 0.276 | 5.0 | 1815 | 0.6461 | 0.6598 | 0.7105 | 0.6842 | 0.8238 | | 0.1944 | 6.0 | 2178 | 0.6995 | 0.6616 | 0.7120 | 0.6859 | 0.8237 | | 0.1505 | 7.0 | 2541 | 0.7337 | 0.6563 | 0.7195 | 0.6865 | 0.8253 | | 0.1505 | 8.0 | 2904 | 0.7710 | 0.6664 | 0.7120 | 0.6884 | 0.8255 | | 0.1178 | 9.0 | 3267 | 0.8030 | 0.6541 | 0.7165 | 0.6838 | 0.8233 | | 0.1006 | 10.0 | 3630 | 0.8095 | 0.6591 | 0.7116 | 0.6843 | 0.8236 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1