--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-finetuned-ner results: [] --- # biobert-finetuned-ner This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6965 - Precision: 0.6381 - Recall: 0.6865 - F1: 0.6614 - Accuracy: 0.8583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 305 | 0.4123 | 0.6110 | 0.6694 | 0.6389 | 0.8542 | | 0.4534 | 2.0 | 610 | 0.4023 | 0.6259 | 0.6848 | 0.6540 | 0.8586 | | 0.4534 | 3.0 | 915 | 0.4384 | 0.6369 | 0.6991 | 0.6666 | 0.8615 | | 0.2438 | 4.0 | 1220 | 0.4799 | 0.6445 | 0.6941 | 0.6684 | 0.8615 | | 0.1551 | 5.0 | 1525 | 0.5190 | 0.6464 | 0.6908 | 0.6678 | 0.8628 | | 0.1551 | 6.0 | 1830 | 0.5772 | 0.6454 | 0.6751 | 0.6599 | 0.8597 | | 0.1044 | 7.0 | 2135 | 0.6141 | 0.6413 | 0.6881 | 0.6639 | 0.8586 | | 0.1044 | 8.0 | 2440 | 0.6587 | 0.6353 | 0.6945 | 0.6636 | 0.8590 | | 0.0755 | 9.0 | 2745 | 0.6856 | 0.6357 | 0.6905 | 0.6620 | 0.8580 | | 0.0604 | 10.0 | 3050 | 0.6965 | 0.6381 | 0.6865 | 0.6614 | 0.8583 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1