--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-finetuned-ner1 results: [] --- # biobert-finetuned-ner1 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6653 - Precision: 0.6417 - Recall: 0.6985 - F1: 0.6689 - Accuracy: 0.8611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 305 | 0.4133 | 0.6172 | 0.6674 | 0.6413 | 0.8529 | | 0.4433 | 2.0 | 610 | 0.4058 | 0.6121 | 0.6868 | 0.6473 | 0.8568 | | 0.4433 | 3.0 | 915 | 0.4456 | 0.6323 | 0.7015 | 0.6651 | 0.8594 | | 0.2431 | 4.0 | 1220 | 0.4708 | 0.6323 | 0.6925 | 0.6610 | 0.8612 | | 0.1563 | 5.0 | 1525 | 0.5084 | 0.6434 | 0.6998 | 0.6704 | 0.8652 | | 0.1563 | 6.0 | 1830 | 0.5655 | 0.6438 | 0.6801 | 0.6615 | 0.8607 | | 0.1038 | 7.0 | 2135 | 0.6173 | 0.6385 | 0.6918 | 0.6641 | 0.8591 | | 0.1038 | 8.0 | 2440 | 0.6352 | 0.6410 | 0.7011 | 0.6697 | 0.8608 | | 0.0754 | 9.0 | 2745 | 0.6600 | 0.6406 | 0.6951 | 0.6668 | 0.8609 | | 0.0599 | 10.0 | 3050 | 0.6653 | 0.6417 | 0.6985 | 0.6689 | 0.8611 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1