File size: 2,795 Bytes
7716aca 9d74d8a 7716aca 9d74d8a 344886b 7716aca 344886b facb390 7716aca 9d74d8a 7716aca 9d74d8a facb390 7716aca 9d74d8a 344886b 7716aca facb390 7716aca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: ctl/wav2vec2-large-xlsr-cantonese
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-300m-zhhk
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-zhhk
This model is a fine-tuned version of [ctl/wav2vec2-large-xlsr-cantonese](https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6213
- Cer: 0.7864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3317 | 1.35 | 400 | 4.5373 | 0.7915 |
| 0.3303 | 2.71 | 800 | 4.5198 | 0.7915 |
| 0.3288 | 4.06 | 1200 | 4.8663 | 0.8504 |
| 0.2901 | 5.41 | 1600 | 4.6080 | 0.8198 |
| 0.2819 | 6.77 | 2000 | 4.4941 | 0.7316 |
| 0.2629 | 8.12 | 2400 | 4.6927 | 0.8021 |
| 0.2363 | 9.48 | 2800 | 4.8796 | 0.8701 |
| 0.2205 | 10.83 | 3200 | 4.6338 | 0.8087 |
| 0.2171 | 12.18 | 3600 | 4.5740 | 0.7562 |
| 0.1875 | 13.54 | 4000 | 4.6072 | 0.7992 |
| 0.1824 | 14.89 | 4400 | 4.6546 | 0.7669 |
| 0.178 | 16.24 | 4800 | 4.6410 | 0.7961 |
| 0.1644 | 17.6 | 5200 | 4.7306 | 0.8236 |
| 0.155 | 18.95 | 5600 | 4.6632 | 0.7900 |
| 0.1396 | 20.3 | 6000 | 4.6239 | 0.8015 |
| 0.1411 | 21.66 | 6400 | 4.6007 | 0.7793 |
| 0.13 | 23.01 | 6800 | 4.5354 | 0.7475 |
| 0.1232 | 24.37 | 7200 | 4.6229 | 0.7600 |
| 0.1239 | 25.72 | 7600 | 4.6382 | 0.7727 |
| 0.1322 | 27.07 | 8000 | 4.6734 | 0.7902 |
| 0.1338 | 28.43 | 8400 | 4.6536 | 0.7861 |
| 0.1353 | 29.78 | 8800 | 4.6213 | 0.7864 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|