Safetensors
qwenva / qwenva.py
jiangchengchengNLP's picture
Upload 3 files
d3fa7ee verified
"""
视觉编码器
"""
#视觉编码器
from transformers import CLIPModel
from transformers import CLIPConfig
vision_config=CLIPConfig.from_pretrained("openai/clip-vit-base-patch32")
clip_model = CLIPModel._from_config(vision_config)
vision_model=clip_model.vision_model
vision_projection=clip_model.visual_projection
#自实现qwen2.5-0.5B
"""
语言模型
"""
import torch
import torch.nn as nn
#from torch.nn.attention import SDPBackend, sdpa_kernel
#所有decoder层共用一个Qwen2RotaryEmbedding,减少模型体积
#llama系的RoPE实现
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, head_dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = head_dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
# seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, q,k,use_cache=False):
seq_len = k.size(2)
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=q.device, dtype=q.dtype)
cos_pos=self.cos_cached[:seq_len].to(dtype=q.dtype).unsqueeze(0).unsqueeze(0)
sin_pos=self.sin_cached[:seq_len].to(dtype=q.dtype).unsqueeze(0).unsqueeze(0)
#print(cos_pos.size())
if use_cache:
q_embed=q*cos_pos[:,:,-1,:].unsqueeze(1)+rotate_half(q)*sin_pos[:,:,-1,:].unsqueeze(1)
else:
q_embed=q*cos_pos+rotate_half(q)*sin_pos
k_embed=k*cos_pos+rotate_half(k)*sin_pos
#print(q_embed.size())
#print(k_embed.size())
return q_embed,k_embed
"""
分组注意力层
"""
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states # 如果 n_rep 为 1,则无需重复,直接返回
# 在 dim=2(即 seqlen 维度之间插入一个新维度),并扩展到 (batch, num_key_value_heads, n_rep, slen, head_dim)
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
# 将其形状调整为 (batch, num_key_value_heads * n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
import math
class Qwen2SdpaAttention(nn.Module):
def __init__(self,hidden_size,num_attention_heads,num_kv_heads):
super(Qwen2SdpaAttention,self).__init__()
self.hidden_size=hidden_size
self.num_attention_heads=num_attention_heads
self.attention_head_size=hidden_size//num_attention_heads
self.num_kv_heads=num_kv_heads
self.id=id
self.q_proj=nn.Linear(hidden_size,hidden_size,bias=True)
self.k_proj=nn.Linear(hidden_size,hidden_size//(num_attention_heads//num_kv_heads),bias=True)
self.v_proj=nn.Linear(hidden_size,hidden_size//(num_attention_heads//num_kv_heads),bias=True)
self.o_proj=nn.Linear(hidden_size,hidden_size,bias=False)
self.rotary_emb=nn.Identity()
#self.rotary_emb=Qwen2RotaryEmbedding(head_dim=self.attention_head_size,max_position_embeddings=max_position_embeddings,dtype=dtype)
def forward(self,input_ids,attention_mask,position_embedding,use_cache=False,past_kv=None,id=None):
"""
如果启用kv缓存,输入的是一个单词的embedding,形状为[batch_size,1,hidden_size]
q的形状是[batch_size,1,hidden_size]
k的形状为[batch_size,seq_len,hidden_size//(num_attention_heads//num_kv_heads)]
v的形状为[batch_size,seq_len,hidden_size//(num_attention_heads//num_kv_heads)]
考虑到预启动阶段。
"""
batch_size,seq_len,_=input_ids.size()
q=self.q_proj(input_ids)
k=self.k_proj(input_ids)
v=self.v_proj(input_ids)
if use_cache:
if id not in past_kv.keys():
past_kv[id]=k,v
flag=True
else:
k_cache,v_cache=past_kv[id]
k=torch.cat((k_cache,k),dim=1)
v=torch.cat((v_cache,v),dim=1)
past_kv[id]=(k,v)
flag=False
#转化成多头 permute是根据当前填入位置选择索引
q=q.view(batch_size,-1,self.num_attention_heads,self.attention_head_size).permute(0,2,1,3)
#print(q.size())
k=k.view(batch_size,-1,self.num_kv_heads,self.attention_head_size).permute(0,2,1,3)
v=v.view(batch_size,-1,self.num_kv_heads, self.attention_head_size).permute(0, 2, 1, 3)
#旋转位置编码
if position_embedding is not None:
q,k=position_embedding(q,k,use_cache=use_cache)
else:
q,k=self.rotary_emb(q,k,use_cache=use_cache)
#计算分组注意力层
k=repeat_kv(k,self.num_attention_heads//self.num_kv_heads)
v=repeat_kv(v,self.num_attention_heads//self.num_kv_heads)
#print(k.size())
#print(v.size())
#casual_mask=torch.tril(torch.ones(1,1,seq_len,seq_len)).to(input_ids.device)
#attention_mask=attention_mask.unsqueeze(1).unsqueeze(-1)
#att_mask=attention_mask*casual_mask
#print(q.dtype)
#print(k.dtype)
#print(v.dtype)
#with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
attention_logits=F.scaled_dot_product_attention(q, k, v, is_causal=flag)
attention_logits=attention_logits.permute(0,2,1,3).contiguous().view(batch_size,seq_len,self.hidden_size)
attention_output=self.o_proj(attention_logits)
return attention_output
#激活函数
import torch.nn.functional as F
class SiLU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
return F.silu(input, inplace=False)
#前馈层
import torch
import torch.nn as nn
import torch.nn.functional as F
class Qwen2MLP(nn.Module):
def __init__(self,input_dim,expand_dim):
super(Qwen2MLP,self).__init__()
self.gate_proj=nn.Linear(input_dim,expand_dim,bias=False)
self.up_proj=nn.Linear(input_dim,expand_dim,bias=False)
self.down_proj=nn.Linear(expand_dim,input_dim,bias=False)
self.act_fn=SiLU()
def forward(self,x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
#qwenRMSNorm
class Qwen2RMSNorm(nn.Module):
def __init__(self,hidden_size,eps=1e-6):
super().__init__()
self.weight=nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon=eps
def forward(self,hidden_states):
old_dtype=hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance=hidden_states.pow(2).mean(-1,keepdim=True)
hidden_states=hidden_states*torch.rsqrt(variance+self.variance_epsilon)
return self.weight*hidden_states.to(old_dtype)
#decoder层
class Qwen2DecoderLayer(nn.Module):
def __init__(self,hidden_size,num_attention_heads,num_kv_heads,expand_dim):
super(Qwen2DecoderLayer, self).__init__()
self.self_attn =Qwen2SdpaAttention(hidden_size=hidden_size,num_attention_heads=num_attention_heads,num_kv_heads=num_kv_heads)
self.mlp=Qwen2MLP(input_dim=hidden_size,expand_dim=expand_dim)
self.input_layernorm=Qwen2RMSNorm(hidden_size)
self.post_attention_layernorm=Qwen2RMSNorm(hidden_size)
def forward(self,hidden_states,attention_mask,position_embedding,use_cache=False,past_kv=None,id=None):
residual=hidden_states
hidden_states=self.input_layernorm(hidden_states)
output=self.self_attn(hidden_states,attention_mask,position_embedding,use_cache=use_cache,past_kv=past_kv,id=id)
output_=residual+output
residual=output_
output_=self.post_attention_layernorm(output_)
output_=self.mlp(output_)
output_=residual+output_
return output_
#模型主体
class Qwen2Model(nn.Module):
def __init__(self,vocab_size,hidden_size,num_layers,num_attention_heads,num_kv_heads,max_position_embeddings,expand_dim):
super().__init__()
self.embed_tokens=nn.Embedding(vocab_size,hidden_size)
self.layers=nn.ModuleList(
[Qwen2DecoderLayer(hidden_size=hidden_size,num_attention_heads=num_attention_heads,num_kv_heads=num_kv_heads,expand_dim=expand_dim)
for _ in range(num_layers)]
)
self.norm=Qwen2RMSNorm(hidden_size)
self.rotary_emb=Qwen2RotaryEmbedding(head_dim=hidden_size//num_attention_heads,max_position_embeddings=max_position_embeddings)
def forward(self,input_ids,attention_mask,use_cache=False,past_kv=None):
token_embed=self.embed_tokens(input_ids)
#with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
for index,layer in enumerate(self.layers):
token_embed=layer(token_embed,attention_mask,self.rotary_emb,use_cache=use_cache,past_kv=past_kv,id=index)
token_embed=self.norm(token_embed)
return token_embed
#文本预测生成模型
class Qwen2ForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model=Qwen2Model(vocab_size=config.vocab_size, hidden_size=config.hidden_size, num_layers=config.num_layers, num_attention_heads=config.num_attention_heads,num_kv_heads=config.num_kv_heads,expand_dim=config.expand_dim,max_position_embeddings=config.max_position_embeddings)
self.lm_head=nn.Linear(config.hidden_size,config.vocab_size,bias=False)
self.dtype=config.dtype
def forward(self,input_ids,attention_mask,use_cache=False,past_kv=None):
if use_cache:
if past_kv is None:
past_kv={}
output=self.model(input_ids=input_ids,attention_mask=attention_mask,use_cache=use_cache,past_kv=past_kv)
logits=self.lm_head(output)
return logits,past_kv
else:
output=self.model(input_ids=input_ids,attention_mask=attention_mask)
logits=self.lm_head(output)
return logits
class Qwen2config:
def __init__(self):
self.name = "Qwen2.5-0.5B"
self.vocab_size=151936
self.hidden_size=896
self.num_layers=24
self.num_kv_heads=2
self.num_attention_heads=14
self.max_position_embeddings= 32768
self.expand_dim=4864
self.dtype=torch.float16
config=Qwen2config()
qwen_model=Qwen2ForCausalLM(config)
#qwenva模型主体实现
#对齐层
class AlignLayer(torch.nn.Module):
def __init__(self,text1_dim,text2_dim,expand_dim):
super(AlignLayer, self).__init__()
self.vision_proj=vision_projection.to(dtype=config.dtype)
self.expand_proj=torch.nn.Linear(text1_dim,expand_dim)
self.text_proj=torch.nn.Linear(expand_dim,text2_dim)
self.activate=torch.nn.SiLU()
def forward(self,vision_embedding):
embed=self.vision_proj(vision_embedding)
embed=self.expand_proj(embed)
embed=self.activate(embed)
embed=self.text_proj(embed)
return embed
text_model=qwen_model
rotary_emb=text_model.model.rotary_emb
text_embedding=text_model.model.embed_tokens
transformer=text_model.model.layers
lm_head=text_model.lm_head
from transformers import AutoTokenizer
model_name="Qwen/Qwen2.5-0.5B"
tokenizer=AutoTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
from huggingface_hub import PyTorchModelHubMixin
class Qwenva(torch.nn.Module,PyTorchModelHubMixin):
def __init__(self,text1_dim,text2_dim,expand_dim,dtype=config.dtype):
super(Qwenva, self).__init__()
self.vision_encoder=vision_model.to(dtype=config.dtype)
self.text_embedding=text_embedding
self.align_layer=AlignLayer(text1_dim,text2_dim,expand_dim).to(dtype)
# 确保 align_layer 的参数梯度可用
self.transformer=transformer
self.rotary_emb=rotary_emb
#for param in self.rotary_emb.parameters():
#param.requires_grad = False
self.lm_head=lm_head
self.tokenizer=tokenizer
def forward(self,input_ids,attention_mask,pixel_values=None,image_idx=None,use_cache=True,past_kv=None):
#print(align_embedding.shape)
if past_kv is None and pixel_values is not None:
token_embedding=self.text_embedding(input_ids)
batch_size=input_ids.shape[0]
vision_embedding=self.vision_encoder(pixel_values)[1]
#print(vision_embedding.shape,attention_mask.shape)
align_embedding=self.align_layer(vision_embedding)
#print(align_embedding.shape)
#print(vision_embedding.shape,attention_mask.shape)
align_embedding=self.align_layer(vision_embedding)
mix_embedding=token_embedding.clone()
#print(mix_embedding.shape)
#print(align_embedding.shape)
#print(image_idx.shape)
#生成有效的嵌入位置坐标,image_idx的形状为[batch_size,1]
valid_indices = image_idx.ne(-100)
#print(valid_indices.squeeze())
valid_positions = torch.arange(batch_size).to(input_ids.device)
#print(valid_positions)
valid_positions = valid_positions[valid_indices.squeeze()].squeeze()
#print(valid_positions)
valid_image_idx =image_idx[valid_positions]
#print(valid_image_idx)
mix_embedding[valid_positions,valid_image_idx] = align_embedding[valid_positions]
past_kv={}
else:
mix_embedding=self.text_embedding(input_ids)
for index,layer in enumerate(self.transformer):
mix_embedding=layer(mix_embedding,attention_mask,position_embedding=self.rotary_emb,use_cache=use_cache,past_kv=past_kv,id=index)
#print(mix_embedding.shape)
logits=self.lm_head(mix_embedding)
if use_cache:
return logits,past_kv
else:
return logits
def generate(self,input_ids,attention_mask,pixel_values=None,image_idx=None,temperature=1,top_k=2,repetition_penalty=1.0,max_length=300):
import math
device=input_ids.device
#system_user_len=input_ids.shape[1]
token_eos = torch.tensor(tokenizer.encode('<|im_end|>')).to(device) # 终止符,遇到该字符就结束推理
out_token = None
#start_token=input_ids
temperature=temperature
top_k=top_k
repetition_penalty =repetition_penalty # 重复惩罚
import torch.nn.functional as F
past_kv=None
with torch.no_grad():
while out_token != token_eos and len(input_ids[0,:])<max_length:
#print(input_ids.shape)
# #print(attention_mask.shape)
if past_kv is None:
logits,past_kv=self.forward(input_ids,attention_mask,pixel_values,image_idx,use_cache=True,past_kv=past_kv)
else:
logits,past_kv=self.forward(input_ids[:,-1].unsqueeze(0),attention_mask[:,-1].unsqueeze(0),pixel_values,image_idx,use_cache=True,past_kv=past_kv)
# 应用重复惩罚
if len(input_ids[0,:]) > 1:
for i in input_ids[0]:
logits[0,-1,i] /= repetition_penalty
#top_k采样
top_k_logits,top_k_indices=torch.topk(logits[0,-1,:],k=top_k)
out_token=top_k_indices[torch.multinomial(F.softmax(top_k_logits/temperature,dim=-1),num_samples=1)].unsqueeze(0)
#最大采样
#out_token=torch.argmax(logits[0,-1,:]).unsqueeze(0).unsqueeze(0)
#start_token=out_token
input_ids =torch.cat([input_ids ,out_token], dim=1) # 每次都把之前的所有token与推理得到的新token拼接起来作为下次的输入
attention_mask = torch.cat([attention_mask,torch.ones(1,1).to(device)], dim=1) # 注意力掩码也要跟着变化
#text = self.tokenizer.decode(input_ids[0,:])
return input_ids
#processor实现,负责与处理数据
from transformers import CLIPProcessor, AutoTokenizer
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model_name="Qwen/Qwen2.5-0.5B"
tokenizer=AutoTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
import torch
from huggingface_hub import TextGenerationOutputToken
from transformers import ProcessorMixin
class Proccessor(ProcessorMixin):
feature_extractor_class: str = "CLIPProcessor"
tokenizer_class: str = "Qwen2TokenizerFast"
def __init__(self,feature_extractor,tokenizer):
super().__init__(feature_extractor=feature_extractor,tokenizer=tokenizer)
self.tokenizer=tokenizer
self.feature_extractor=feature_extractor
self.image_token=self.tokenizer.encode('<image>')[0]
def __call__(self,input_data,input_image=None,device="cuda"):
if isinstance(input_data,str):
input_=self.tokenizer.apply_chat_template(
[{'role':'user','content':'<image>\n{}'.format(input_data)}
],
add_generation_prompt=True,)
elif isinstance(input_data,list):
input_=self.tokenizer.apply_chat_template(
input_data,
add_generation_prompt=True,
)
input_ids=torch.tensor(input_).unsqueeze(0).to(device)
attention_mask=torch.ones(1,len(input_ids[0])).to(device)
img_idx=input_.index(self.image_token)
img_idx=torch.tensor(img_idx).unsqueeze(0).to(device)
if input_image is not None:
inputs = self.feature_extractor(images=input_image, return_tensors="pt")
pixel_values=inputs['pixel_values'].to('cuda')
return {
"input_ids":input_ids,
"attention_mask":attention_mask,
"pixel_values":pixel_values,
"image_idx":img_idx
}
else:
return {
"input_ids":input_ids,
"attention_mask":attention_mask}
processor=Proccessor(processor,tokenizer)
model=Qwenva(512,896,4096,dtype=config.dtype)
model.load_state_dict(torch.load("./qwenva.pth",weights_only=True))
model.eval()