Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-Walker2DBulletEnv-v0.zip +3 -0
- a2c-Walker2DBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-Walker2DBulletEnv-v0/data +105 -0
- a2c-Walker2DBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-Walker2DBulletEnv-v0/policy.pth +3 -0
- a2c-Walker2DBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-Walker2DBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- logs/a2c-Walker2DBulletEnv-v0.zip +3 -0
- logs/tensorboard/A2C_1/events.out.tfevents.1659077381.rlcube.22811.0 +3 -0
- logs/vec_normalize.pkl +3 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2DBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 21.00 +/- 3.61
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2DBulletEnv-v0
|
20 |
+
type: Walker2DBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **Walker2DBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **Walker2DBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:621ee06f007601606394d5098275cbcf7a4d9f685a92d2f127909617385d1661
|
3 |
+
size 120277
|
a2c-Walker2DBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-Walker2DBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f09cc7bedc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f09cc7bee50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f09cc7beee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f09cc7bef70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f09cc7c1040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f09cc7c10d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f09cc7c1160>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f09cc7c11f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f09cc7c1280>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f09cc7c1310>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f09cc7c13a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f09cce7de80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
22
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
6
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 200000,
|
62 |
+
"_total_timesteps": 200000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1659077381.8752115,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "work_dirs/Walker2DBulletEnv-v0/tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9ybGN1YmUvbWluaWNvbmRhMy9lbnZzL3B5dG9yY2gvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL3JsY3ViZS9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAACx7m8AAAAAAVPafNiWjAL4AAAAABEuePgAAAAAK6rW/Ejo+wFphgD1r2ww+/bkGPlhBG0Aw4aG9fx58P20KpD1yzQ4/zmqwPeqkJ8DufoS9IK6yPi/N3z7anpw+AAAAAFT2nzYRetG+AAAAAO6nAD8AAAAAf7xkvl6zo75zweQ+8xAMPiJnAD7Epxe+QZhKvqee7z4147Y/Bcgnv5+Uu78BvRO+gqkNvyCusj4vzd8+e6fJPQAAAABU9p82bT7nvwAAAADsiom/AAAAAPBfS79bBTm/Oi4EwOiFDz4qCdE9dN65vt2W+78a5/w8O3ojO6ezg7/CvEXAIbSevvfsrb8grrI+L83fPriFqD8AAAAAVPafNkCI5r0AAAAAqTKqPgAAAAC4u2w/O1SEP+Xtxj2glhq+Iw4JPsYIG7/HipS9HfEvP5dLwz07QBg/QuPsPWdQw763Hnm9nGM3wFtqEsCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy+51PwAAAAAL+m0/AAAAAMAMPL0AAAAAdvJsPwAAAADS14A/AAAAALeoKz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFLDeT8AAAAAJhR+PwAAAABKydM9AAAAAKhHiT8AAAAAPZ2APwAAAABw+9E9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDH2Ww/AAAAAMYUhT8AAAAAGjCJPAAAAACWWX8/AAAAAKyrhz8AAAAARWUivQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiTyHPwAAAACrt4I/AAAAAPuC9DwAAAAAmnRvPwAAAAANSYQ/AAAAAD+cnT0AAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+iLORkmQeMAWyUS5aMAXSUR0Blm+S4e9zwdX2UKGgGR0BV6incclw+aAdLemgIR0BloI5Jbt7bdX2UKGgGR0BSgdeUpuuSaAdLZGgIR0BlpWLrHEMtdX2UKGgGR0BTFjVhCtzTaAdLWGgIR0Blpdj5KvmpdX2UKGgGR0BSpxgZ0jkdaAdLfWgIR0BlpnGVAzHkdX2UKGgGR0BXnxW912aEaAdLaGgIR0BlrG76Hj6vdX2UKGgGR0BTkxJZntfHaAdLbmgIR0BlseSjgydndX2UKGgGR0BJgx7RfF72aAdLcGgIR0BlsqV0Lc9GdX2UKGgGR0A1hxUvPC2uaAdLRWgIR0BltDGipNsWdX2UKGgGR0BWkuUdJaq0aAdLuGgIR0Blu2attALRdX2UKGgGR0BVFgYP5HmSaAdLVmgIR0Blu8inpB5YdX2UKGgGR0BEztQ0oBq9aAdLWmgIR0BlvOcQRPGidX2UKGgGR0BOUYpUgjhUaAdLcWgIR0BlwRLIxQBQdX2UKGgGR0BP1HXmNipeaAdLVmgIR0BlxYrWiDdydX2UKGgGR0BQwEFwDNhWaAdLWWgIR0BlxZA0Kqn4dX2UKGgGR0BKRiQcPvroaAdLW2gIR0Blx0AggX/HdX2UKGgGR0BanmYBvJiiaAdLdmgIR0Blzo6EJ0GNdX2UKGgGR0BVWP8EV32VaAdLZ2gIR0Bl0TWTX8O1dX2UKGgGR0BLyqji4rjHaAdLZGgIR0Bl0p1FH8TBdX2UKGgGR0BXamPtD2J0aAdLgmgIR0Bl1FXmvGIbdX2UKGgGR0A5PRbbDdgwaAdLNWgIR0Bl1IKtxMnJdX2UKGgGR0ArpKTSsr/baAdLEWgIR0Bl1jbFjurqdX2UKGgGR0BJ4l/6O5rhaAdLPmgIR0Bl2EXSBshxdX2UKGgGR0BP5ogmqo60aAdLQmgIR0Bl2gl8gIQfdX2UKGgGR0BOzXSSeRPoaAdLPGgIR0Bl3xN/OMVDdX2UKGgGR0BNLCItUXHjaAdLWGgIR0Bl4DyrgflqdX2UKGgGR0Bbt3tfG+9KaAdLdWgIR0Bl4deF+NLldX2UKGgGR0BSDXFtKqXGaAdLS2gIR0Bl4pztCzC2dX2UKGgGR0BHAXRw6ySnaAdLKmgIR0Bl5QNy5qdpdX2UKGgGR0A2aarmyPdVaAdLWGgIR0Bl6RccENe/dX2UKGgGR0BXzRl6JIlMaAdLXmgIR0Bl7IWpIczZdX2UKGgGR0BMHT8YQ8OkaAdLUmgIR0Bl7nDUExIrdX2UKGgGR0Bb1rbL2YfGaAdLc2gIR0Bl773Cbc46dX2UKGgGR0BTNlcIJJGwaAdLX2gIR0Bl8/iJfpljdX2UKGgGR0BQrN4JNTLoaAdLU2gIR0Bl9g08/2TQdX2UKGgGR0BRW6+zt1IRaAdLUWgIR0Bl96y8jAzpdX2UKGgGR0Ao94Uvf0mMaAdLJWgIR0Bl+D37DVH4dX2UKGgGR0BROsstkFwDaAdLWmgIR0Bl+gjKPn0TdX2UKGgGR0BTjwSOBDohaAdLZWgIR0BmAYgvDgqFdX2UKGgGR0BQEyDqW1MNaAdLVWgIR0BmAfGACnxbdX2UKGgGR0BTFMc6vJRwaAdLZGgIR0BmAx4dIXj3dX2UKGgGR0BW1bCWNWELaAdLfGgIR0BmCEcS5AhTdX2UKGgGR0BY8ca4tpVTaAdLXmgIR0BmDMfcN6PbdX2UKGgGR0BXctqxkd3jaAdLaGgIR0BmDZDgIhQndX2UKGgGR0BThc4PwuuiaAdLXGgIR0BmDbKJVKf4dX2UKGgGR0BUms4PwuuiaAdLaWgIR0BmFFbLU1AJdX2UKGgGR0ADpqynk1dgaAdLQWgIR0BmFSDAaef7dX2UKGgGR0BGB0NKAavSaAdLYWgIR0BmGJfYzzmPdX2UKGgGR0A8UtA9mpVCaAdLLWgIR0BmGj7di2DydX2UKGgGR0BYESEDhcZ+aAdLfmgIR0BmGzK7qY7adX2UKGgGR0BRKCd4FA3UaAdLqWgIR0BmJ7tAs053dX2UKGgGR0Bb4prgwXZXaAdLpmgIR0BmLWYQarFPdX2UKGgGR0BxgKYE4ecQaAdNeQFoCEdAZlNINEw353V9lChoBkdAeG9/Mnqmj2gHTSkCaAhHQGZYeCCjDbd1fZQoaAZHQHtGTsdDIBBoB01oAmgIR0BmYi+zt1IRdX2UKGgGR0BRxXhn8KoiaAdLkWgIR0BmY+RJVbRndX2UKGgGR0BAIY51eSjhaAdLKWgIR0BmaKB3A2ycdX2UKGgGR0B9WtJ9RaX8aAdN4wJoCEdAZoK3vQWvbHV9lChoBkdAM5vwiJO32GgHS1toCEdAZo1XMhX8wnV9lChoBkdAdXo9ETg2qGgHTQMCaAhHQGaUElNUOut1fZQoaAZHQG2xx3mmtQtoB018AWgIR0BmlL/0dzXCdX2UKGgGR0Axo8U21lXjaAdLQ2gIR0BmlS0D2alUdX2UKGgGR0AwvtUXHim3aAdLJmgIR0BmmSmGdqcmdX2UKGgGR0AzrQTVUdaMaAdLV2gIR0Bmn2PJaJQ+dX2UKGgGR0B0S12FFlTWaAdNEgJoCEdAZp/gQYk3THV9lChoBkdANV/USZjQRmgHS0FoCEdAZqDqdpZfUnV9lChoBkdAQN2IEbHZK2gHS3FoCEdAZqFuRcNYsHV9lChoBkdAMoA1BMSK32gHSxRoCEdAZqI3RXwLE3V9lChoBkdAMFbLyMDOkmgHSxNoCEdAZqOQEIPbwnV9lChoBkdANHc5jpcHGGgHSyxoCEdAZqYDujRD1HV9lChoBkdAOwTEzfrKNmgHSzZoCEdAZqhmr8zhxnV9lChoBkdAPX2hqTKT0WgHS1BoCEdAZqibBoEjgXV9lChoBkdANO8N2C/XXmgHSxhoCEdAZqsqm0mdAnV9lChoBkdAMCNt2s7uD2gHSydoCEdAZq0XkYGdJHV9lChoBkdAN0xpUPxx1mgHS2doCEdAZq9bwjMV13V9lChoBkdAOxwQQL/jsGgHSzxoCEdAZrPjy4FzMnV9lChoBkdALZoczZYgaGgHSzZoCEdAZrV77bcoIHV9lChoBkdAOG8xTKkl/2gHS2BoCEdAZrYRRuTA33V9lChoBkdAMB/OlfqoqGgHS0NoCEdAZrt420iQk3V9lChoBkdAMBN1uBMBZWgHSzVoCEdAZrwJAMUh3nV9lChoBkdALcdCNS619mgHS0FoCEdAZrzn9vS+g3V9lChoBkdAPVtPgvUSZmgHSzFoCEdAZsGlfJFLFnV9lChoBkdANnQtBfKISGgHSy5oCEdAZsIjTrmhd3V9lChoBkdAQLP/YJ3PiWgHS0FoCEdAZsLuogmqpHV9lChoBkdANLbpeNT99GgHSxZoCEdAZsSnivPkaXV9lChoBkdAN7kzTF2mpGgHSxtoCEdAZsTf51vETHV9lChoBkdAMvEF8ohIOGgHSxZoCEdAZsdghKUVz3V9lChoBkdANyg3YL9deWgHSxZoCEdAZsnnA6+36XV9lChoBkdALlQfZElVtGgHSzhoCEdAZss/Y8Md93V9lChoBkdAK5bcGkep42gHSxRoCEdAZsw0uUUwjHV9lChoBkdAMwrB42S+xmgHSxZoCEdAZs3AKOT7mHV9lChoBkdAMTizHCGetmgHSxRoCEdAZs6EOiFj/nV9lChoBkdAR59KEnLJS2gHS2toCEdAZs9mMfigkHV9lChoBkdAMSh/7SApa2gHSxZoCEdAZtA9jgAIY3V9lChoBkdALm6hYeT3ZmgHSxJoCEdAZtCmNR3u/nV9lChoBkdAQFT39JjDsWgHSyloCEdAZtQeLehwl3V9lChoBkdALcqKgqVhTmgHSyNoCEdAZtRML4N7SnV9lChoBkdANeeZgG8mKWgHSzNoCEdAZtZ/Khcqv3V9lChoBkdANQ9+w1R+B2gHSxZoCEdAZtbho/Rmb3V9lChoBkdAMFfDcdo372gHSyVoCEdAZthThHbypnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 10000,
|
98 |
+
"n_steps": 5,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-Walker2DBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9005c6d5b095d8e4fa14051f062ff2e18f9ef8b7527f9154fb9241aa9d821058
|
3 |
+
size 52030
|
a2c-Walker2DBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e224f1c3f7cc641888b5ee58680a751b80dbe6d89afcb2f763cea2632f954211
|
3 |
+
size 52670
|
a2c-Walker2DBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Walker2DBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.27 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.1
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f09cc7bedc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f09cc7bee50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f09cc7beee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f09cc7bef70>", "_build": "<function ActorCriticPolicy._build at 0x7f09cc7c1040>", "forward": "<function ActorCriticPolicy.forward at 0x7f09cc7c10d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f09cc7c1160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f09cc7c11f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f09cc7c1280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f09cc7c1310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f09cc7c13a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f09cce7de80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659077381.8752115, "learning_rate": 0.00096, "tensorboard_log": "work_dirs/Walker2DBulletEnv-v0/tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9ybGN1YmUvbWluaWNvbmRhMy9lbnZzL3B5dG9yY2gvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL3JsY3ViZS9taW5pY29uZGEzL2VudnMvcHl0b3JjaC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAACx7m8AAAAAAVPafNiWjAL4AAAAABEuePgAAAAAK6rW/Ejo+wFphgD1r2ww+/bkGPlhBG0Aw4aG9fx58P20KpD1yzQ4/zmqwPeqkJ8DufoS9IK6yPi/N3z7anpw+AAAAAFT2nzYRetG+AAAAAO6nAD8AAAAAf7xkvl6zo75zweQ+8xAMPiJnAD7Epxe+QZhKvqee7z4147Y/Bcgnv5+Uu78BvRO+gqkNvyCusj4vzd8+e6fJPQAAAABU9p82bT7nvwAAAADsiom/AAAAAPBfS79bBTm/Oi4EwOiFDz4qCdE9dN65vt2W+78a5/w8O3ojO6ezg7/CvEXAIbSevvfsrb8grrI+L83fPriFqD8AAAAAVPafNkCI5r0AAAAAqTKqPgAAAAC4u2w/O1SEP+Xtxj2glhq+Iw4JPsYIG7/HipS9HfEvP5dLwz07QBg/QuPsPWdQw763Hnm9nGM3wFtqEsCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy+51PwAAAAAL+m0/AAAAAMAMPL0AAAAAdvJsPwAAAADS14A/AAAAALeoKz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFLDeT8AAAAAJhR+PwAAAABKydM9AAAAAKhHiT8AAAAAPZ2APwAAAABw+9E9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDH2Ww/AAAAAMYUhT8AAAAAGjCJPAAAAACWWX8/AAAAAKyrhz8AAAAARWUivQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiTyHPwAAAACrt4I/AAAAAPuC9DwAAAAAmnRvPwAAAAANSYQ/AAAAAD+cnT0AAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF+iLORkmQeMAWyUS5aMAXSUR0Blm+S4e9zwdX2UKGgGR0BV6incclw+aAdLemgIR0BloI5Jbt7bdX2UKGgGR0BSgdeUpuuSaAdLZGgIR0BlpWLrHEMtdX2UKGgGR0BTFjVhCtzTaAdLWGgIR0Blpdj5KvmpdX2UKGgGR0BSpxgZ0jkdaAdLfWgIR0BlpnGVAzHkdX2UKGgGR0BXnxW912aEaAdLaGgIR0BlrG76Hj6vdX2UKGgGR0BTkxJZntfHaAdLbmgIR0BlseSjgydndX2UKGgGR0BJgx7RfF72aAdLcGgIR0BlsqV0Lc9GdX2UKGgGR0A1hxUvPC2uaAdLRWgIR0BltDGipNsWdX2UKGgGR0BWkuUdJaq0aAdLuGgIR0Blu2attALRdX2UKGgGR0BVFgYP5HmSaAdLVmgIR0Blu8inpB5YdX2UKGgGR0BEztQ0oBq9aAdLWmgIR0BlvOcQRPGidX2UKGgGR0BOUYpUgjhUaAdLcWgIR0BlwRLIxQBQdX2UKGgGR0BP1HXmNipeaAdLVmgIR0BlxYrWiDdydX2UKGgGR0BQwEFwDNhWaAdLWWgIR0BlxZA0Kqn4dX2UKGgGR0BKRiQcPvroaAdLW2gIR0Blx0AggX/HdX2UKGgGR0BanmYBvJiiaAdLdmgIR0Blzo6EJ0GNdX2UKGgGR0BVWP8EV32VaAdLZ2gIR0Bl0TWTX8O1dX2UKGgGR0BLyqji4rjHaAdLZGgIR0Bl0p1FH8TBdX2UKGgGR0BXamPtD2J0aAdLgmgIR0Bl1FXmvGIbdX2UKGgGR0A5PRbbDdgwaAdLNWgIR0Bl1IKtxMnJdX2UKGgGR0ArpKTSsr/baAdLEWgIR0Bl1jbFjurqdX2UKGgGR0BJ4l/6O5rhaAdLPmgIR0Bl2EXSBshxdX2UKGgGR0BP5ogmqo60aAdLQmgIR0Bl2gl8gIQfdX2UKGgGR0BOzXSSeRPoaAdLPGgIR0Bl3xN/OMVDdX2UKGgGR0BNLCItUXHjaAdLWGgIR0Bl4DyrgflqdX2UKGgGR0Bbt3tfG+9KaAdLdWgIR0Bl4deF+NLldX2UKGgGR0BSDXFtKqXGaAdLS2gIR0Bl4pztCzC2dX2UKGgGR0BHAXRw6ySnaAdLKmgIR0Bl5QNy5qdpdX2UKGgGR0A2aarmyPdVaAdLWGgIR0Bl6RccENe/dX2UKGgGR0BXzRl6JIlMaAdLXmgIR0Bl7IWpIczZdX2UKGgGR0BMHT8YQ8OkaAdLUmgIR0Bl7nDUExIrdX2UKGgGR0Bb1rbL2YfGaAdLc2gIR0Bl773Cbc46dX2UKGgGR0BTNlcIJJGwaAdLX2gIR0Bl8/iJfpljdX2UKGgGR0BQrN4JNTLoaAdLU2gIR0Bl9g08/2TQdX2UKGgGR0BRW6+zt1IRaAdLUWgIR0Bl96y8jAzpdX2UKGgGR0Ao94Uvf0mMaAdLJWgIR0Bl+D37DVH4dX2UKGgGR0BROsstkFwDaAdLWmgIR0Bl+gjKPn0TdX2UKGgGR0BTjwSOBDohaAdLZWgIR0BmAYgvDgqFdX2UKGgGR0BQEyDqW1MNaAdLVWgIR0BmAfGACnxbdX2UKGgGR0BTFMc6vJRwaAdLZGgIR0BmAx4dIXj3dX2UKGgGR0BW1bCWNWELaAdLfGgIR0BmCEcS5AhTdX2UKGgGR0BY8ca4tpVTaAdLXmgIR0BmDMfcN6PbdX2UKGgGR0BXctqxkd3jaAdLaGgIR0BmDZDgIhQndX2UKGgGR0BThc4PwuuiaAdLXGgIR0BmDbKJVKf4dX2UKGgGR0BUms4PwuuiaAdLaWgIR0BmFFbLU1AJdX2UKGgGR0ADpqynk1dgaAdLQWgIR0BmFSDAaef7dX2UKGgGR0BGB0NKAavSaAdLYWgIR0BmGJfYzzmPdX2UKGgGR0A8UtA9mpVCaAdLLWgIR0BmGj7di2DydX2UKGgGR0BYESEDhcZ+aAdLfmgIR0BmGzK7qY7adX2UKGgGR0BRKCd4FA3UaAdLqWgIR0BmJ7tAs053dX2UKGgGR0Bb4prgwXZXaAdLpmgIR0BmLWYQarFPdX2UKGgGR0BxgKYE4ecQaAdNeQFoCEdAZlNINEw353V9lChoBkdAeG9/Mnqmj2gHTSkCaAhHQGZYeCCjDbd1fZQoaAZHQHtGTsdDIBBoB01oAmgIR0BmYi+zt1IRdX2UKGgGR0BRxXhn8KoiaAdLkWgIR0BmY+RJVbRndX2UKGgGR0BAIY51eSjhaAdLKWgIR0BmaKB3A2ycdX2UKGgGR0B9WtJ9RaX8aAdN4wJoCEdAZoK3vQWvbHV9lChoBkdAM5vwiJO32GgHS1toCEdAZo1XMhX8wnV9lChoBkdAdXo9ETg2qGgHTQMCaAhHQGaUElNUOut1fZQoaAZHQG2xx3mmtQtoB018AWgIR0BmlL/0dzXCdX2UKGgGR0Axo8U21lXjaAdLQ2gIR0BmlS0D2alUdX2UKGgGR0AwvtUXHim3aAdLJmgIR0BmmSmGdqcmdX2UKGgGR0AzrQTVUdaMaAdLV2gIR0Bmn2PJaJQ+dX2UKGgGR0B0S12FFlTWaAdNEgJoCEdAZp/gQYk3THV9lChoBkdANV/USZjQRmgHS0FoCEdAZqDqdpZfUnV9lChoBkdAQN2IEbHZK2gHS3FoCEdAZqFuRcNYsHV9lChoBkdAMoA1BMSK32gHSxRoCEdAZqI3RXwLE3V9lChoBkdAMFbLyMDOkmgHSxNoCEdAZqOQEIPbwnV9lChoBkdANHc5jpcHGGgHSyxoCEdAZqYDujRD1HV9lChoBkdAOwTEzfrKNmgHSzZoCEdAZqhmr8zhxnV9lChoBkdAPX2hqTKT0WgHS1BoCEdAZqibBoEjgXV9lChoBkdANO8N2C/XXmgHSxhoCEdAZqsqm0mdAnV9lChoBkdAMCNt2s7uD2gHSydoCEdAZq0XkYGdJHV9lChoBkdAN0xpUPxx1mgHS2doCEdAZq9bwjMV13V9lChoBkdAOxwQQL/jsGgHSzxoCEdAZrPjy4FzMnV9lChoBkdALZoczZYgaGgHSzZoCEdAZrV77bcoIHV9lChoBkdAOG8xTKkl/2gHS2BoCEdAZrYRRuTA33V9lChoBkdAMB/OlfqoqGgHS0NoCEdAZrt420iQk3V9lChoBkdAMBN1uBMBZWgHSzVoCEdAZrwJAMUh3nV9lChoBkdALcdCNS619mgHS0FoCEdAZrzn9vS+g3V9lChoBkdAPVtPgvUSZmgHSzFoCEdAZsGlfJFLFnV9lChoBkdANnQtBfKISGgHSy5oCEdAZsIjTrmhd3V9lChoBkdAQLP/YJ3PiWgHS0FoCEdAZsLuogmqpHV9lChoBkdANLbpeNT99GgHSxZoCEdAZsSnivPkaXV9lChoBkdAN7kzTF2mpGgHSxtoCEdAZsTf51vETHV9lChoBkdAMvEF8ohIOGgHSxZoCEdAZsdghKUVz3V9lChoBkdANyg3YL9deWgHSxZoCEdAZsnnA6+36XV9lChoBkdALlQfZElVtGgHSzhoCEdAZss/Y8Md93V9lChoBkdAK5bcGkep42gHSxRoCEdAZsw0uUUwjHV9lChoBkdAMwrB42S+xmgHSxZoCEdAZs3AKOT7mHV9lChoBkdAMTizHCGetmgHSxRoCEdAZs6EOiFj/nV9lChoBkdAR59KEnLJS2gHS2toCEdAZs9mMfigkHV9lChoBkdAMSh/7SApa2gHSxZoCEdAZtA9jgAIY3V9lChoBkdALm6hYeT3ZmgHSxJoCEdAZtCmNR3u/nV9lChoBkdAQFT39JjDsWgHSyloCEdAZtQeLehwl3V9lChoBkdALcqKgqVhTmgHSyNoCEdAZtRML4N7SnV9lChoBkdANeeZgG8mKWgHSzNoCEdAZtZ/Khcqv3V9lChoBkdANQ9+w1R+B2gHSxZoCEdAZtbho/Rmb3V9lChoBkdAMFfDcdo372gHSyVoCEdAZthThHbypnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.27 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu102", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
|
logs/a2c-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6d50965fb382d0a7ffc6fd365ffc79e600c78b7e425be6f4278513de3fff2b1
|
3 |
+
size 120277
|
logs/tensorboard/A2C_1/events.out.tfevents.1659077381.rlcube.22811.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:606f11fe8d1d0aee2a790f245d3205afff3c4943c431b2188679fd5b2f1c9062
|
3 |
+
size 50868
|
logs/vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a965169e000d515e4da8d0e19ce4151a89826e6fecfc9ec5386a7dd3539337af
|
3 |
+
size 2181
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0581c09e84419bd46ccd745a6e6b4a0006d7bea39fe9de34fa815550616e10ea
|
3 |
+
size 1122297
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 21.000909501686692, "std_reward": 3.6087928148526904, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-29T14:52:48.264473"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb6bcd50a724073ed1227eb2239623d4b4cb7a02955c40b7e2c86b70658752dc
|
3 |
+
size 2249
|