update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: mbart-large-50-finetuned-stocks-event-all
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mbart-large-50-finetuned-stocks-event-all
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5518
|
21 |
+
- Rouge1: 0.5383
|
22 |
+
- Rouge2: 0.4868
|
23 |
+
- Rougel: 0.5387
|
24 |
+
- Rougelsum: 0.5362
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5.6e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 8
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
|
55 |
+
| 2.2097 | 1.0 | 97 | 0.5821 | 0.5174 | 0.4646 | 0.5137 | 0.5111 |
|
56 |
+
| 0.5315 | 2.0 | 194 | 0.4826 | 0.5169 | 0.4709 | 0.5186 | 0.5168 |
|
57 |
+
| 0.3602 | 3.0 | 291 | 0.4677 | 0.5319 | 0.4811 | 0.5344 | 0.5304 |
|
58 |
+
| 0.2639 | 4.0 | 388 | 0.4724 | 0.5319 | 0.4750 | 0.5335 | 0.5318 |
|
59 |
+
| 0.1715 | 5.0 | 485 | 0.4504 | 0.5331 | 0.4790 | 0.5337 | 0.5323 |
|
60 |
+
| 0.1136 | 6.0 | 582 | 0.4894 | 0.5321 | 0.4886 | 0.5324 | 0.5295 |
|
61 |
+
| 0.0618 | 7.0 | 679 | 0.5445 | 0.5456 | 0.4959 | 0.5473 | 0.5438 |
|
62 |
+
| 0.0347 | 8.0 | 776 | 0.5518 | 0.5383 | 0.4868 | 0.5387 | 0.5362 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.26.1
|
68 |
+
- Pytorch 1.13.1+cu116
|
69 |
+
- Datasets 2.9.0
|
70 |
+
- Tokenizers 0.13.2
|