--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: - jiazhengli/Meta-Llama-3-8B-QLoRA-Assessment-Rationale-sft - meta-llama/Meta-Llama-3-8B model-index: - name: sft_trained_woaqa_llama3_dpo results: [] datasets: - jiazhengli/Rationale_MCTS - jiazhengli/Synthetic_Rationale language: - en metrics: - accuracy - f1 --- # Meta-Llama-3-8B-QLoRA-Assessment-Rationale-dpo The model trained with w/o private data from the EMNLP 2024 Paper: Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring. - **Paper:** [Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring](https://arxiv.org/abs/2406.19949) (EMNLP 2024 Findings) - **GitHub Repository:** [Thought Tree Assessment Repository](https://github.com/lijiazheng99/thought_tree_assessment) ## Intended uses & limitations This model offers a valuable resource for research in explainable AI within educational technology. The model is trained with **noisy** response-level rationales. This makes them **unsuitable** for direct application in high-stakes assessments without additional verification. ## Training and evaluation data We trained and evaluated the model on the [Synthetic Rationale data](https://huggingface.co/datasets/jiazhengli/Synthetic_Rationale), which was generated from the [Rationale MCTS data](https://huggingface.co/datasets/jiazhengli/Rationale_MCTS). To extract scores from rationales, please use the [jiazhengli/deberta-v3-large-Rationale-to-Score](https://huggingface.co/jiazhengli/deberta-v3-large-Rationale-to-Score). ## Citation Please cite the following work if you utilize this model: **BibTeX:** ```bibtex @misc{li2024calibratingllmspreferenceoptimization, title={Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring}, author={Jiazheng Li and Hainiu Xu and Zhaoyue Sun and Yuxiang Zhou and David West and Cesare Aloisi and Yulan He}, year={2024}, eprint={2406.19949}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.19949}, } ``` ## Training procedure Please refer to our [paper](https://arxiv.org/abs/2406.19949). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.1 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.3287 | 0.33 | 200 | 1.8699 | 9.9343 | 9.1282 | 0.6312 | 0.8061 | -167.4677 | -142.3102 | -1.1863 | -1.1862 | | 1.1821 | 0.67 | 400 | 1.9729 | 9.9379 | 9.2024 | 0.6113 | 0.7354 | -166.7256 | -142.2745 | -1.2732 | -1.2718 | | 0.9116 | 1.0 | 600 | 1.9455 | 9.7997 | 8.9466 | 0.6482 | 0.8531 | -169.2835 | -143.6562 | -1.3527 | -1.3510 | | 0.8412 | 1.33 | 800 | 2.0041 | 9.5449 | 8.5167 | 0.6397 | 1.0282 | -173.5831 | -146.2043 | -1.4206 | -1.4179 | | 0.7345 | 1.67 | 1000 | 2.0659 | 9.1494 | 8.1514 | 0.6426 | 0.9980 | -177.2357 | -150.1593 | -1.4325 | -1.4290 | | 0.6609 | 2.0 | 1200 | 2.0321 | 9.0327 | 7.8126 | 0.6681 | 1.2200 | -180.6237 | -151.3265 | -1.4359 | -1.4321 | | 0.6768 | 2.33 | 1400 | 2.0313 | 9.1007 | 7.8929 | 0.6709 | 1.2079 | -179.8211 | -150.6457 | -1.4472 | -1.4432 | | 0.615 | 2.67 | 1600 | 2.0515 | 9.0972 | 7.9582 | 0.6624 | 1.1390 | -179.1680 | -150.6812 | -1.4413 | -1.4370 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2