File size: 182,365 Bytes
df3cdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Base classes common to both the slow and the fast tokenization classes: PreTrainedTokenizerBase (host all the user
fronting encoding methods) Special token mixing (host the special tokens logic) and BatchEncoding (wrap the dictionary
of output with special method for the Fast tokenizers)
"""

import copy
import json
import os
import re
import warnings
from collections import OrderedDict, UserDict
from collections.abc import Mapping, Sized
from contextlib import contextmanager
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union

import numpy as np
from packaging import version

from transformers import __version__
from transformers.dynamic_module_utils import custom_object_save
from transformers.utils import (
    ExplicitEnum,
    PaddingStrategy,
    PushToHubMixin,
    TensorType,
    add_end_docstrings,
    add_model_info_to_auto_map,
    cached_file,
    copy_func,
    download_url,
    extract_commit_hash,
    is_flax_available,
    is_jax_tensor,
    is_numpy_array,
    is_offline_mode,
    is_remote_url,
    is_tf_available,
    is_tf_tensor,
    is_tokenizers_available,
    is_torch_available,
    is_torch_device,
    is_torch_tensor,
    logging,
    requires_backends,
    to_py_obj,
)


if TYPE_CHECKING:
    if is_torch_available():
        import torch
    if is_tf_available():
        import tensorflow as tf
    if is_flax_available():
        import jax.numpy as jnp  # noqa: F401


if is_tokenizers_available():
    from tokenizers import AddedToken
    from tokenizers import Encoding as EncodingFast
else:

    @dataclass(frozen=True, eq=True)
    class AddedToken:
        """
        AddedToken represents a token to be added to a Tokenizer An AddedToken can have special options defining the
        way it should behave.
        """

        content: str = field(default_factory=str)
        single_word: bool = False
        lstrip: bool = False
        rstrip: bool = False
        normalized: bool = True

        def __getstate__(self):
            return self.__dict__

    @dataclass
    class EncodingFast:
        """This is dummy class because without the `tokenizers` library we don't have these objects anyway"""

        pass


logger = logging.get_logger(__name__)

VERY_LARGE_INTEGER = int(1e30)  # This is used to set the max input length for a model with infinite size input
LARGE_INTEGER = int(1e20)  # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER

# Define type aliases and NamedTuples
TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[int]
TextInputPair = Tuple[str, str]
PreTokenizedInputPair = Tuple[List[str], List[str]]
EncodedInputPair = Tuple[List[int], List[int]]


# Slow tokenizers used to be saved in three separated files
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
ADDED_TOKENS_FILE = "added_tokens.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"

# Fast tokenizers (provided by HuggingFace tokenizer's library) can be saved in a single file
FULL_TOKENIZER_FILE = "tokenizer.json"
_re_tokenizer_file = re.compile(r"tokenizer\.(.*)\.json")


class TruncationStrategy(ExplicitEnum):
    """
    Possible values for the `truncation` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in
    an IDE.
    """

    ONLY_FIRST = "only_first"
    ONLY_SECOND = "only_second"
    LONGEST_FIRST = "longest_first"
    DO_NOT_TRUNCATE = "do_not_truncate"


class CharSpan(NamedTuple):
    """
    Character span in the original string.

    Args:
        start (`int`): Index of the first character in the original string.
        end (`int`): Index of the character following the last character in the original string.
    """

    start: int
    end: int


class TokenSpan(NamedTuple):
    """
    Token span in an encoded string (list of tokens).

    Args:
        start (`int`): Index of the first token in the span.
        end (`int`): Index of the token following the last token in the span.
    """

    start: int
    end: int


class BatchEncoding(UserDict):
    """
    Holds the output of the [`~tokenization_utils_base.PreTrainedTokenizerBase.__call__`],
    [`~tokenization_utils_base.PreTrainedTokenizerBase.encode_plus`] and
    [`~tokenization_utils_base.PreTrainedTokenizerBase.batch_encode_plus`] methods (tokens, attention_masks, etc).

    This class is derived from a python dictionary and can be used as a dictionary. In addition, this class exposes
    utility methods to map from word/character space to token space.

    Args:
        data (`dict`):
            Dictionary of lists/arrays/tensors returned by the `__call__`/`encode_plus`/`batch_encode_plus` methods
            ('input_ids', 'attention_mask', etc.).
        encoding (`tokenizers.Encoding` or `Sequence[tokenizers.Encoding]`, *optional*):
            If the tokenizer is a fast tokenizer which outputs additional information like mapping from word/character
            space to token space the `tokenizers.Encoding` instance or list of instance (for batches) hold this
            information.
        tensor_type (`Union[None, str, TensorType]`, *optional*):
            You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
            initialization.
        prepend_batch_axis (`bool`, *optional*, defaults to `False`):
            Whether or not to add a batch axis when converting to tensors (see `tensor_type` above).
        n_sequences (`Optional[int]`, *optional*):
            You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
            initialization.
    """

    def __init__(
        self,
        data: Optional[Dict[str, Any]] = None,
        encoding: Optional[Union[EncodingFast, Sequence[EncodingFast]]] = None,
        tensor_type: Union[None, str, TensorType] = None,
        prepend_batch_axis: bool = False,
        n_sequences: Optional[int] = None,
    ):
        super().__init__(data)

        if isinstance(encoding, EncodingFast):
            encoding = [encoding]

        self._encodings = encoding

        if n_sequences is None and encoding is not None and len(encoding):
            n_sequences = encoding[0].n_sequences

        self._n_sequences = n_sequences

        self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis)

    @property
    def n_sequences(self) -> Optional[int]:
        """
        `Optional[int]`: The number of sequences used to generate each sample from the batch encoded in this
        [`BatchEncoding`]. Currently can be one of `None` (unknown), `1` (a single sentence) or `2` (a pair of
        sentences)
        """
        return self._n_sequences

    @property
    def is_fast(self) -> bool:
        """
        `bool`: Indicate whether this [`BatchEncoding`] was generated from the result of a [`PreTrainedTokenizerFast`]
        or not.
        """
        return self._encodings is not None

    def __getitem__(self, item: Union[int, str]) -> Union[Any, EncodingFast]:
        """
        If the key is a string, returns the value of the dict associated to `key` ('input_ids', 'attention_mask',
        etc.).

        If the key is an integer, get the `tokenizers.Encoding` for batch item with index `key`.

        If the key is a slice, returns the value of the dict associated to `key` ('input_ids', 'attention_mask', etc.)
        with the constraint of slice.
        """
        if isinstance(item, str):
            return self.data[item]
        elif self._encodings is not None:
            return self._encodings[item]
        elif isinstance(item, slice):
            return {key: self.data[key][item] for key in self.data.keys()}
        else:
            raise KeyError(
                "Invalid key. Only three types of key are available: "
                "(1) string, (2) integers for backend Encoding, and (3) slices for data subsetting."
            )

    def __getattr__(self, item: str):
        try:
            return self.data[item]
        except KeyError:
            raise AttributeError

    def __getstate__(self):
        return {"data": self.data, "encodings": self._encodings}

    def __setstate__(self, state):
        if "data" in state:
            self.data = state["data"]

        if "encodings" in state:
            self._encodings = state["encodings"]

    def keys(self):
        return self.data.keys()

    def values(self):
        return self.data.values()

    def items(self):
        return self.data.items()

    # After this point:
    # Extended properties and methods only available for fast (Rust-based) tokenizers
    # provided by HuggingFace tokenizers library.

    @property
    def encodings(self) -> Optional[List[EncodingFast]]:
        """
        `Optional[List[tokenizers.Encoding]]`: The list all encodings from the tokenization process. Returns `None` if
        the input was tokenized through Python (i.e., not a fast) tokenizer.
        """
        return self._encodings

    def tokens(self, batch_index: int = 0) -> List[str]:
        """
        Return the list of tokens (sub-parts of the input strings after word/subword splitting and before conversion to
        integer indices) at a given batch index (only works for the output of a fast tokenizer).

        Args:
            batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.

        Returns:
            `List[str]`: The list of tokens at that index.
        """
        if not self._encodings:
            raise ValueError(
                "tokens() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
                " class)."
            )
        return self._encodings[batch_index].tokens

    def sequence_ids(self, batch_index: int = 0) -> List[Optional[int]]:
        """
        Return a list mapping the tokens to the id of their original sentences:

            - `None` for special tokens added around or between sequences,
            - `0` for tokens corresponding to words in the first sequence,
            - `1` for tokens corresponding to words in the second sequence when a pair of sequences was jointly
              encoded.

        Args:
            batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.

        Returns:
            `List[Optional[int]]`: A list indicating the sequence id corresponding to each token. Special tokens added
            by the tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding
            sequence.
        """
        if not self._encodings:
            raise ValueError(
                "sequence_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
                " class)."
            )
        return self._encodings[batch_index].sequence_ids

    def words(self, batch_index: int = 0) -> List[Optional[int]]:
        """
        Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer.

        Args:
            batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.

        Returns:
            `List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the
            tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word
            (several tokens will be mapped to the same word index if they are parts of that word).
        """
        if not self._encodings:
            raise ValueError(
                "words() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
                " class)."
            )
        warnings.warn(
            "`BatchEncoding.words()` property is deprecated and should be replaced with the identical, "
            "but more self-explanatory `BatchEncoding.word_ids()` property.",
            FutureWarning,
        )
        return self.word_ids(batch_index)

    def word_ids(self, batch_index: int = 0) -> List[Optional[int]]:
        """
        Return a list mapping the tokens to their actual word in the initial sentence for a fast tokenizer.

        Args:
            batch_index (`int`, *optional*, defaults to 0): The index to access in the batch.

        Returns:
            `List[Optional[int]]`: A list indicating the word corresponding to each token. Special tokens added by the
            tokenizer are mapped to `None` and other tokens are mapped to the index of their corresponding word
            (several tokens will be mapped to the same word index if they are parts of that word).
        """
        if not self._encodings:
            raise ValueError(
                "word_ids() is not available when using non-fast tokenizers (e.g. instance of a `XxxTokenizerFast`"
                " class)."
            )
        return self._encodings[batch_index].word_ids

    def token_to_sequence(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
        """
        Get the index of the sequence represented by the given token. In the general use case, this method returns `0`
        for a single sequence or the first sequence of a pair, and `1` for the second sequence of a pair

        Can be called as:

        - `self.token_to_sequence(token_index)` if batch size is 1
        - `self.token_to_sequence(batch_index, token_index)` if batch size is greater than 1

        This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e.,
        words are defined by the user). In this case it allows to easily associate encoded tokens with provided
        tokenized words.

        Args:
            batch_or_token_index (`int`):
                Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of
                the token in the sequence.
            token_index (`int`, *optional*):
                If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the
                sequence.

        Returns:
            `int`: Index of the word in the input sequence.
        """

        if not self._encodings:
            raise ValueError("token_to_sequence() is not available when using Python based tokenizers")
        if token_index is not None:
            batch_index = batch_or_token_index
        else:
            batch_index = 0
            token_index = batch_or_token_index
        if batch_index < 0:
            batch_index = self._batch_size + batch_index
        if token_index < 0:
            token_index = self._seq_len + token_index
        return self._encodings[batch_index].token_to_sequence(token_index)

    def token_to_word(self, batch_or_token_index: int, token_index: Optional[int] = None) -> int:
        """
        Get the index of the word corresponding (i.e. comprising) to an encoded token in a sequence of the batch.

        Can be called as:

        - `self.token_to_word(token_index)` if batch size is 1
        - `self.token_to_word(batch_index, token_index)` if batch size is greater than 1

        This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e.,
        words are defined by the user). In this case it allows to easily associate encoded tokens with provided
        tokenized words.

        Args:
            batch_or_token_index (`int`):
                Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
                the token in the sequence.
            token_index (`int`, *optional*):
                If a batch index is provided in *batch_or_token_index*, this can be the index of the token in the
                sequence.

        Returns:
            `int`: Index of the word in the input sequence.
        """

        if not self._encodings:
            raise ValueError("token_to_word() is not available when using Python based tokenizers")
        if token_index is not None:
            batch_index = batch_or_token_index
        else:
            batch_index = 0
            token_index = batch_or_token_index
        if batch_index < 0:
            batch_index = self._batch_size + batch_index
        if token_index < 0:
            token_index = self._seq_len + token_index
        return self._encodings[batch_index].token_to_word(token_index)

    def word_to_tokens(
        self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
    ) -> Optional[TokenSpan]:
        """
        Get the encoded token span corresponding to a word in a sequence of the batch.

        Token spans are returned as a [`~tokenization_utils_base.TokenSpan`] with:

        - **start** -- Index of the first token.
        - **end** -- Index of the token following the last token.

        Can be called as:

        - `self.word_to_tokens(word_index, sequence_index: int = 0)` if batch size is 1
        - `self.word_to_tokens(batch_index, word_index, sequence_index: int = 0)` if batch size is greater or equal to
          1

        This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words
        are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized
        words.

        Args:
            batch_or_word_index (`int`):
                Index of the sequence in the batch. If the batch only comprises one sequence, this can be the index of
                the word in the sequence.
            word_index (`int`, *optional*):
                If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the
                sequence.
            sequence_index (`int`, *optional*, defaults to 0):
                If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
                or 1) the provided word index belongs to.

        Returns:
            ([`~tokenization_utils_base.TokenSpan`], *optional*): Span of tokens in the encoded sequence. Returns
            `None` if no tokens correspond to the word. This can happen especially when the token is a special token
            that has been used to format the tokenization. For example when we add a class token at the very beginning
            of the tokenization.
        """

        if not self._encodings:
            raise ValueError("word_to_tokens() is not available when using Python based tokenizers")
        if word_index is not None:
            batch_index = batch_or_word_index
        else:
            batch_index = 0
            word_index = batch_or_word_index
        if batch_index < 0:
            batch_index = self._batch_size + batch_index
        if word_index < 0:
            word_index = self._seq_len + word_index
        span = self._encodings[batch_index].word_to_tokens(word_index, sequence_index)
        return TokenSpan(*span) if span is not None else None

    def token_to_chars(self, batch_or_token_index: int, token_index: Optional[int] = None) -> CharSpan:
        """
        Get the character span corresponding to an encoded token in a sequence of the batch.

        Character spans are returned as a [`~tokenization_utils_base.CharSpan`] with:

        - **start** -- Index of the first character in the original string associated to the token.
        - **end** -- Index of the character following the last character in the original string associated to the
          token.

        Can be called as:

        - `self.token_to_chars(token_index)` if batch size is 1
        - `self.token_to_chars(batch_index, token_index)` if batch size is greater or equal to 1

        Args:
            batch_or_token_index (`int`):
                Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
                the token in the sequence.
            token_index (`int`, *optional*):
                If a batch index is provided in *batch_or_token_index*, this can be the index of the token or tokens in
                the sequence.

        Returns:
            [`~tokenization_utils_base.CharSpan`]: Span of characters in the original string, or None, if the token
            (e.g. <s>, </s>) doesn't correspond to any chars in the origin string.
        """

        if not self._encodings:
            raise ValueError("token_to_chars() is not available when using Python based tokenizers")
        if token_index is not None:
            batch_index = batch_or_token_index
        else:
            batch_index = 0
            token_index = batch_or_token_index
        span_indices = self._encodings[batch_index].token_to_chars(token_index)

        return CharSpan(*span_indices) if span_indices is not None else None

    def char_to_token(
        self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0
    ) -> int:
        """
        Get the index of the token in the encoded output comprising a character in the original string for a sequence
        of the batch.

        Can be called as:

        - `self.char_to_token(char_index)` if batch size is 1
        - `self.char_to_token(batch_index, char_index)` if batch size is greater or equal to 1

        This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words
        are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized
        words.

        Args:
            batch_or_char_index (`int`):
                Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
                the word in the sequence
            char_index (`int`, *optional*):
                If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the
                sequence.
            sequence_index (`int`, *optional*, defaults to 0):
                If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
                or 1) the provided character index belongs to.


        Returns:
            `int`: Index of the token.
        """

        if not self._encodings:
            raise ValueError("char_to_token() is not available when using Python based tokenizers")
        if char_index is not None:
            batch_index = batch_or_char_index
        else:
            batch_index = 0
            char_index = batch_or_char_index
        return self._encodings[batch_index].char_to_token(char_index, sequence_index)

    def word_to_chars(
        self, batch_or_word_index: int, word_index: Optional[int] = None, sequence_index: int = 0
    ) -> CharSpan:
        """
        Get the character span in the original string corresponding to given word in a sequence of the batch.

        Character spans are returned as a CharSpan NamedTuple with:

        - start: index of the first character in the original string
        - end: index of the character following the last character in the original string

        Can be called as:

        - `self.word_to_chars(word_index)` if batch size is 1
        - `self.word_to_chars(batch_index, word_index)` if batch size is greater or equal to 1

        Args:
            batch_or_word_index (`int`):
                Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
                the word in the sequence
            word_index (`int`, *optional*):
                If a batch index is provided in *batch_or_token_index*, this can be the index of the word in the
                sequence.
            sequence_index (`int`, *optional*, defaults to 0):
                If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
                or 1) the provided word index belongs to.

        Returns:
            `CharSpan` or `List[CharSpan]`: Span(s) of the associated character or characters in the string. CharSpan
            are NamedTuple with:

                - start: index of the first character associated to the token in the original string
                - end: index of the character following the last character associated to the token in the original
                  string
        """

        if not self._encodings:
            raise ValueError("word_to_chars() is not available when using Python based tokenizers")
        if word_index is not None:
            batch_index = batch_or_word_index
        else:
            batch_index = 0
            word_index = batch_or_word_index
        return CharSpan(*(self._encodings[batch_index].word_to_chars(word_index, sequence_index)))

    def char_to_word(self, batch_or_char_index: int, char_index: Optional[int] = None, sequence_index: int = 0) -> int:
        """
        Get the word in the original string corresponding to a character in the original string of a sequence of the
        batch.

        Can be called as:

        - `self.char_to_word(char_index)` if batch size is 1
        - `self.char_to_word(batch_index, char_index)` if batch size is greater than 1

        This method is particularly suited when the input sequences are provided as pre-tokenized sequences (i.e. words
        are defined by the user). In this case it allows to easily associate encoded tokens with provided tokenized
        words.

        Args:
            batch_or_char_index (`int`):
                Index of the sequence in the batch. If the batch only comprise one sequence, this can be the index of
                the character in the original string.
            char_index (`int`, *optional*):
                If a batch index is provided in *batch_or_token_index*, this can be the index of the character in the
                original string.
            sequence_index (`int`, *optional*, defaults to 0):
                If pair of sequences are encoded in the batch this can be used to specify which sequence in the pair (0
                or 1) the provided character index belongs to.


        Returns:
            `int` or `List[int]`: Index or indices of the associated encoded token(s).
        """

        if not self._encodings:
            raise ValueError("char_to_word() is not available when using Python based tokenizers")
        if char_index is not None:
            batch_index = batch_or_char_index
        else:
            batch_index = 0
            char_index = batch_or_char_index
        return self._encodings[batch_index].char_to_word(char_index, sequence_index)

    def convert_to_tensors(
        self, tensor_type: Optional[Union[str, TensorType]] = None, prepend_batch_axis: bool = False
    ):
        """
        Convert the inner content to tensors.

        Args:
            tensor_type (`str` or [`~utils.TensorType`], *optional*):
                The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
                `None`, no modification is done.
            prepend_batch_axis (`int`, *optional*, defaults to `False`):
                Whether or not to add the batch dimension during the conversion.
        """
        if tensor_type is None:
            return self

        # Convert to TensorType
        if not isinstance(tensor_type, TensorType):
            tensor_type = TensorType(tensor_type)

        # Get a function reference for the correct framework
        if tensor_type == TensorType.TENSORFLOW:
            if not is_tf_available():
                raise ImportError(
                    "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
                )
            import tensorflow as tf

            as_tensor = tf.constant
            is_tensor = tf.is_tensor
        elif tensor_type == TensorType.PYTORCH:
            if not is_torch_available():
                raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
            import torch

            as_tensor = torch.tensor
            is_tensor = torch.is_tensor
        elif tensor_type == TensorType.JAX:
            if not is_flax_available():
                raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
            import jax.numpy as jnp  # noqa: F811

            as_tensor = jnp.array
            is_tensor = is_jax_tensor
        else:

            def as_tensor(value, dtype=None):
                if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)):
                    value_lens = [len(val) for val in value]
                    if len(set(value_lens)) > 1 and dtype is None:
                        # we have a ragged list so handle explicitly
                        value = as_tensor([np.asarray(val) for val in value], dtype=object)
                return np.asarray(value, dtype=dtype)

            is_tensor = is_numpy_array

        # Do the tensor conversion in batch
        for key, value in self.items():
            try:
                if prepend_batch_axis:
                    value = [value]

                if not is_tensor(value):
                    tensor = as_tensor(value)

                    # Removing this for now in favor of controlling the shape with `prepend_batch_axis`
                    # # at-least2d
                    # if tensor.ndim > 2:
                    #     tensor = tensor.squeeze(0)
                    # elif tensor.ndim < 2:
                    #     tensor = tensor[None, :]

                    self[key] = tensor
            except Exception as e:
                if key == "overflowing_tokens":
                    raise ValueError(
                        "Unable to create tensor returning overflowing tokens of different lengths. "
                        "Please see if a fast version of this tokenizer is available to have this feature available."
                    ) from e
                raise ValueError(
                    "Unable to create tensor, you should probably activate truncation and/or padding with"
                    " 'padding=True' 'truncation=True' to have batched tensors with the same length. Perhaps your"
                    f" features (`{key}` in this case) have excessive nesting (inputs type `list` where type `int` is"
                    " expected)."
                ) from e

        return self

    def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding":
        """
        Send all values to device by calling `v.to(device)` (PyTorch only).

        Args:
            device (`str` or `torch.device`): The device to put the tensors on.

        Returns:
            [`BatchEncoding`]: The same instance after modification.
        """
        requires_backends(self, ["torch"])

        # This check catches things like APEX blindly calling "to" on all inputs to a module
        # Otherwise it passes the casts down and casts the LongTensor containing the token idxs
        # into a HalfTensor
        if isinstance(device, str) or is_torch_device(device) or isinstance(device, int):
            self.data = {k: v.to(device=device) for k, v in self.data.items()}
        else:
            logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.")
        return self


class SpecialTokensMixin:
    """
    A mixin derived by [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] to handle specific behaviors related to
    special tokens. In particular, this class hold the attributes which can be used to directly access these special
    tokens in a model-independent manner and allow to set and update the special tokens.

    Args:
        bos_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing the beginning of a sentence.
        eos_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing the end of a sentence.
        unk_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing an out-of-vocabulary token.
        sep_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token separating two different sentences in the same input (used by BERT for instance).
        pad_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
            attention mechanisms or loss computation.
        cls_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing the class of the input (used by BERT for instance).
        mask_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing a masked token (used by masked-language modeling pretraining objectives, like
            BERT).
        additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
            A tuple or a list of additional special tokens.
    """

    SPECIAL_TOKENS_ATTRIBUTES = [
        "bos_token",
        "eos_token",
        "unk_token",
        "sep_token",
        "pad_token",
        "cls_token",
        "mask_token",
        "additional_special_tokens",
    ]

    def __init__(self, verbose=True, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._pad_token_type_id = 0
        self._additional_special_tokens = []
        self.verbose = verbose

        # We directly set the hidden value to allow initialization with special tokens
        # which are not yet in the vocabulary. Necessary for serialization/de-serialization
        # TODO clean this up at some point (probably by switching to fast tokenizers)
        for key, value in kwargs.items():
            if value is None:
                continue
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
                if key == "additional_special_tokens":
                    assert isinstance(value, (list, tuple)), f"Value {value} is not a list or tuple"
                    assert all(
                        isinstance(t, (str, AddedToken)) for t in value
                    ), "One of the tokens is not a string or an AddedToken"
                    setattr(self, key, value)
                elif isinstance(value, (str, AddedToken)):
                    setattr(self, key, value)
                else:
                    raise TypeError(f"special token {key} has to be either str or AddedToken but got: {type(value)}")

    def sanitize_special_tokens(self) -> int:
        """
        Make sure that all the special tokens attributes of the tokenizer (`tokenizer.mask_token`,
        `tokenizer.cls_token`, etc.) are in the vocabulary.

        Add the missing ones to the vocabulary if needed.

        Return:
            `int`: The number of tokens added in the vocabulary during the operation.
        """
        return self.add_tokens(self.all_special_tokens_extended, special_tokens=True)

    def add_special_tokens(
        self, special_tokens_dict: Dict[str, Union[str, AddedToken]], replace_additional_special_tokens=True
    ) -> int:
        """
        Add a dictionary of special tokens (eos, pad, cls, etc.) to the encoder and link them to class attributes. If
        special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the
        current vocabulary).

        Note,None When adding new tokens to the vocabulary, you should make sure to also resize the token embedding
        matrix of the model so that its embedding matrix matches the tokenizer.

        In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method.

        Using `add_special_tokens` will ensure your special tokens can be used in several ways:

        - Special tokens are carefully handled by the tokenizer (they are never split).
        - You can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This
          makes it easy to develop model-agnostic training and fine-tuning scripts.

        When possible, special tokens are already registered for provided pretrained models (for instance
        [`BertTokenizer`] `cls_token` is already registered to be :obj*'[CLS]'* and XLM's one is also registered to be
        `'</s>'`).

        Args:
            special_tokens_dict (dictionary *str* to *str* or `tokenizers.AddedToken`):
                Keys should be in the list of predefined special attributes: [`bos_token`, `eos_token`, `unk_token`,
                `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`].

                Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer
                assign the index of the `unk_token` to them).
            replace_additional_special_tokens (`bool`, *optional*,, defaults to `True`):
                If `True`, the existing list of additional special tokens will be replaced by the one specified in
                `special_tokens_dict`. Otherwise, `self._additional_special_tokens` is updated. In the former case, the
                tokens will NOT be removed from the tokenizer's full vocabulary - they are only being flagged as
                non-special tokens.

        Returns:
            `int`: Number of tokens added to the vocabulary.

        Examples:

        ```python
        # Let's see how to add a new classification token to GPT-2
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
        model = GPT2Model.from_pretrained("gpt2")

        special_tokens_dict = {"cls_token": "<CLS>"}

        num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
        print("We have added", num_added_toks, "tokens")
        # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
        model.resize_token_embeddings(len(tokenizer))

        assert tokenizer.cls_token == "<CLS>"
        ```"""
        if not special_tokens_dict:
            return 0

        added_tokens = 0
        for key, value in special_tokens_dict.items():
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES, f"Key {key} is not a special token"

            if self.verbose:
                logger.info(f"Assigning {value} to the {key} key of the tokenizer")

            if key == "additional_special_tokens":
                assert isinstance(value, (list, tuple)) and all(
                    isinstance(t, (str, AddedToken)) for t in value
                ), f"Tokens {value} for key {key} should all be str or AddedToken instances"

                if replace_additional_special_tokens:
                    setattr(self, key, value)
                else:
                    # This is a copy of `self._additional_special_tokens`
                    additional_special_tokens = getattr(self, key)
                    additional_special_tokens_set = set(additional_special_tokens)
                    to_add = []
                    for token in value:
                        if str(token) not in additional_special_tokens_set and str(token) not in to_add:
                            to_add.append(token)
                    # update the property
                    additional_special_tokens.extend(to_add)
                    self.additional_special_tokens = additional_special_tokens

                added_tokens += self.add_tokens(value, special_tokens=True)
            else:
                assert isinstance(
                    value, (str, AddedToken)
                ), f"Token {value} for key {key} should be a str or an AddedToken instance"
                setattr(self, key, value)
                added_tokens += self.add_tokens([value], special_tokens=True)

        return added_tokens

    def add_tokens(
        self, new_tokens: Union[str, AddedToken, List[Union[str, AddedToken]]], special_tokens: bool = False
    ) -> int:
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to
        it with indices starting from length of the current vocabulary and and will be isolated before the tokenization
        algorithm is applied. Added tokens and tokens from the vocabulary of the tokenization algorithm are therefore
        not treated in the same way.

        Note, when adding new tokens to the vocabulary, you should make sure to also resize the token embedding matrix
        of the model so that its embedding matrix matches the tokenizer.

        In order to do that, please use the [`~PreTrainedModel.resize_token_embeddings`] method.

        Args:
            new_tokens (`str`, `tokenizers.AddedToken` or a list of *str* or `tokenizers.AddedToken`):
                Tokens are only added if they are not already in the vocabulary. `tokenizers.AddedToken` wraps a string
                token to let you personalize its behavior: whether this token should only match against a single word,
                whether this token should strip all potential whitespaces on the left side, whether this token should
                strip all potential whitespaces on the right side, etc.
            special_tokens (`bool`, *optional*, defaults to `False`):
                Can be used to specify if the token is a special token. This mostly change the normalization behavior
                (special tokens like CLS or [MASK] are usually not lower-cased for instance).

                See details for `tokenizers.AddedToken` in HuggingFace tokenizers library.

        Returns:
            `int`: Number of tokens added to the vocabulary.

        Examples:

        ```python
        # Let's see how to increase the vocabulary of Bert model and tokenizer
        tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        model = BertModel.from_pretrained("bert-base-uncased")

        num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"])
        print("We have added", num_added_toks, "tokens")
        # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
        model.resize_token_embeddings(len(tokenizer))
        ```"""
        if not new_tokens:
            return 0

        if not isinstance(new_tokens, (list, tuple)):
            new_tokens = [new_tokens]

        return self._add_tokens(new_tokens, special_tokens=special_tokens)

    def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
        raise NotImplementedError

    @property
    def bos_token(self) -> str:
        """
        `str`: Beginning of sentence token. Log an error if used while not having been set.
        """
        if self._bos_token is None:
            if self.verbose:
                logger.error("Using bos_token, but it is not set yet.")
            return None
        return str(self._bos_token)

    @property
    def eos_token(self) -> str:
        """
        `str`: End of sentence token. Log an error if used while not having been set.
        """
        if self._eos_token is None:
            if self.verbose:
                logger.error("Using eos_token, but it is not set yet.")
            return None
        return str(self._eos_token)

    @property
    def unk_token(self) -> str:
        """
        `str`: Unknown token. Log an error if used while not having been set.
        """
        if self._unk_token is None:
            if self.verbose:
                logger.error("Using unk_token, but it is not set yet.")
            return None
        return str(self._unk_token)

    @property
    def sep_token(self) -> str:
        """
        `str`: Separation token, to separate context and query in an input sequence. Log an error if used while not
        having been set.
        """
        if self._sep_token is None:
            if self.verbose:
                logger.error("Using sep_token, but it is not set yet.")
            return None
        return str(self._sep_token)

    @property
    def pad_token(self) -> str:
        """
        `str`: Padding token. Log an error if used while not having been set.
        """
        if self._pad_token is None:
            if self.verbose:
                logger.error("Using pad_token, but it is not set yet.")
            return None
        return str(self._pad_token)

    @property
    def cls_token(self) -> str:
        """
        `str`: Classification token, to extract a summary of an input sequence leveraging self-attention along the full
        depth of the model. Log an error if used while not having been set.
        """
        if self._cls_token is None:
            if self.verbose:
                logger.error("Using cls_token, but it is not set yet.")
            return None
        return str(self._cls_token)

    @property
    def mask_token(self) -> str:
        """
        `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
        having been set.
        """
        if self._mask_token is None:
            if self.verbose:
                logger.error("Using mask_token, but it is not set yet.")
            return None
        return str(self._mask_token)

    @property
    def additional_special_tokens(self) -> List[str]:
        """
        `List[str]`: All the additional special tokens you may want to use. Log an error if used while not having been
        set.
        """
        if self._additional_special_tokens is None:
            if self.verbose:
                logger.error("Using additional_special_tokens, but it is not set yet.")
            return None
        return [str(tok) for tok in self._additional_special_tokens]

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

    @property
    def bos_token_id(self) -> Optional[int]:
        """
        `Optional[int]`: Id of the beginning of sentence token in the vocabulary. Returns `None` if the token has not
        been set.
        """
        if self._bos_token is None:
            return None
        return self.convert_tokens_to_ids(self.bos_token)

    @property
    def eos_token_id(self) -> Optional[int]:
        """
        `Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been
        set.
        """
        if self._eos_token is None:
            return None
        return self.convert_tokens_to_ids(self.eos_token)

    @property
    def unk_token_id(self) -> Optional[int]:
        """
        `Optional[int]`: Id of the unknown token in the vocabulary. Returns `None` if the token has not been set.
        """
        if self._unk_token is None:
            return None
        return self.convert_tokens_to_ids(self.unk_token)

    @property
    def sep_token_id(self) -> Optional[int]:
        """
        `Optional[int]`: Id of the separation token in the vocabulary, to separate context and query in an input
        sequence. Returns `None` if the token has not been set.
        """
        if self._sep_token is None:
            return None
        return self.convert_tokens_to_ids(self.sep_token)

    @property
    def pad_token_id(self) -> Optional[int]:
        """
        `Optional[int]`: Id of the padding token in the vocabulary. Returns `None` if the token has not been set.
        """
        if self._pad_token is None:
            return None
        return self.convert_tokens_to_ids(self.pad_token)

    @property
    def pad_token_type_id(self) -> int:
        """
        `int`: Id of the padding token type in the vocabulary.
        """
        return self._pad_token_type_id

    @property
    def cls_token_id(self) -> Optional[int]:
        """
        `Optional[int]`: Id of the classification token in the vocabulary, to extract a summary of an input sequence
        leveraging self-attention along the full depth of the model.

        Returns `None` if the token has not been set.
        """
        if self._cls_token is None:
            return None
        return self.convert_tokens_to_ids(self.cls_token)

    @property
    def mask_token_id(self) -> Optional[int]:
        """
        `Optional[int]`: Id of the mask token in the vocabulary, used when training a model with masked-language
        modeling. Returns `None` if the token has not been set.
        """
        if self._mask_token is None:
            return None
        return self.convert_tokens_to_ids(self.mask_token)

    @property
    def additional_special_tokens_ids(self) -> List[int]:
        """
        `List[int]`: Ids of all the additional special tokens in the vocabulary. Log an error if used while not having
        been set.
        """
        return self.convert_tokens_to_ids(self.additional_special_tokens)

    @bos_token_id.setter
    def bos_token_id(self, value):
        self._bos_token = self.convert_ids_to_tokens(value) if value is not None else None

    @eos_token_id.setter
    def eos_token_id(self, value):
        self._eos_token = self.convert_ids_to_tokens(value) if value is not None else None

    @unk_token_id.setter
    def unk_token_id(self, value):
        self._unk_token = self.convert_ids_to_tokens(value) if value is not None else None

    @sep_token_id.setter
    def sep_token_id(self, value):
        self._sep_token = self.convert_ids_to_tokens(value) if value is not None else None

    @pad_token_id.setter
    def pad_token_id(self, value):
        self._pad_token = self.convert_ids_to_tokens(value) if value is not None else None

    @cls_token_id.setter
    def cls_token_id(self, value):
        self._cls_token = self.convert_ids_to_tokens(value) if value is not None else None

    @mask_token_id.setter
    def mask_token_id(self, value):
        self._mask_token = self.convert_ids_to_tokens(value) if value is not None else None

    @additional_special_tokens_ids.setter
    def additional_special_tokens_ids(self, values):
        self._additional_special_tokens = [self.convert_ids_to_tokens(value) for value in values]

    @property
    def special_tokens_map(self) -> Dict[str, Union[str, List[str]]]:
        """
        `Dict[str, Union[str, List[str]]]`: A dictionary mapping special token class attributes (`cls_token`,
        `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.).

        Convert potential tokens of `tokenizers.AddedToken` type to string.
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = (
                    type(attr_value)(str(attr_value_sub) for attr_value_sub in attr_value)
                    if isinstance(attr_value, (list, tuple))
                    else str(attr_value)
                )
        return set_attr

    @property
    def special_tokens_map_extended(self) -> Dict[str, Union[str, AddedToken, List[Union[str, AddedToken]]]]:
        """
        `Dict[str, Union[str, tokenizers.AddedToken, List[Union[str, tokenizers.AddedToken]]]]`: A dictionary mapping
        special token class attributes (`cls_token`, `unk_token`, etc.) to their values (`'<unk>'`, `'<cls>'`, etc.).

        Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how
        special tokens are tokenized.
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self) -> List[str]:
        """
        `List[str]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.

        Convert tokens of `tokenizers.AddedToken` type to string.
        """
        all_toks = [str(s) for s in self.all_special_tokens_extended]
        return all_toks

    @property
    def all_special_tokens_extended(self) -> List[Union[str, AddedToken]]:
        """
        `List[Union[str, tokenizers.AddedToken]]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.) mapped to class
        attributes.

        Don't convert tokens of `tokenizers.AddedToken` type to string so they can be used to control more finely how
        special tokens are tokenized.
        """
        all_toks = []
        set_attr = self.special_tokens_map_extended
        for attr_value in set_attr.values():
            all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value])
        all_toks = list(OrderedDict.fromkeys(all_toks))
        return all_toks

    @property
    def all_special_ids(self) -> List[int]:
        """
        `List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.
        """
        all_toks = self.all_special_tokens
        all_ids = self.convert_tokens_to_ids(all_toks)
        return all_ids


ENCODE_KWARGS_DOCSTRING = r"""
            add_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether or not to encode the sequences with the special tokens relative to their model.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Activates and controls padding. Accepts the following values:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
                Activates and controls truncation. Accepts the following values:

                - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
                  to the maximum acceptable input length for the model if that argument is not provided. This will
                  truncate token by token, removing a token from the longest sequence in the pair if a pair of
                  sequences (or a batch of pairs) is provided.
                - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
                  greater than the model maximum admissible input size).
            max_length (`int`, *optional*):
                Controls the maximum length to use by one of the truncation/padding parameters.

                If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
                is required by one of the truncation/padding parameters. If the model has no specific maximum input
                length (like XLNet) truncation/padding to a maximum length will be deactivated.
            stride (`int`, *optional*, defaults to 0):
                If set to a number along with `max_length`, the overflowing tokens returned when
                `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
                returned to provide some overlap between truncated and overflowing sequences. The value of this
                argument defines the number of overlapping tokens.
            is_split_into_words (`bool`, *optional*, defaults to `False`):
                Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
                tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
                which it will tokenize. This is useful for NER or token classification.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value. Requires `padding` to be activated.
                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
"""

ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
            return_token_type_ids (`bool`, *optional*):
                Whether to return token type IDs. If left to the default, will return the token type IDs according to
                the specific tokenizer's default, defined by the `return_outputs` attribute.

                [What are token type IDs?](../glossary#token-type-ids)
            return_attention_mask (`bool`, *optional*):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific tokenizer's default, defined by the `return_outputs` attribute.

                [What are attention masks?](../glossary#attention-mask)
            return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
                of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
                of returning overflowing tokens.
            return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
                Whether or not to return special tokens mask information.
            return_offsets_mapping (`bool`, *optional*, defaults to `False`):
                Whether or not to return `(char_start, char_end)` for each token.

                This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
                Python's tokenizer, this method will raise `NotImplementedError`.
            return_length  (`bool`, *optional*, defaults to `False`):
                Whether or not to return the lengths of the encoded inputs.
            verbose (`bool`, *optional*, defaults to `True`):
                Whether or not to print more information and warnings.
            **kwargs: passed to the `self.tokenize()` method

        Return:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model.

              [What are input IDs?](../glossary#input-ids)

            - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
              if *"token_type_ids"* is in `self.model_input_names`).

              [What are token type IDs?](../glossary#token-type-ids)

            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).

              [What are attention masks?](../glossary#attention-mask)

            - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
              `return_overflowing_tokens=True`).
            - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
              `return_overflowing_tokens=True`).
            - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
              regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
            - **length** -- The length of the inputs (when `return_length=True`)
"""

INIT_TOKENIZER_DOCSTRING = r"""
    Class attributes (overridden by derived classes)

        - **vocab_files_names** (`Dict[str, str]`) -- A dictionary with, as keys, the `__init__` keyword name of each
          vocabulary file required by the model, and as associated values, the filename for saving the associated file
          (string).
        - **pretrained_vocab_files_map** (`Dict[str, Dict[str, str]]`) -- A dictionary of dictionaries, with the
          high-level keys being the `__init__` keyword name of each vocabulary file required by the model, the
          low-level being the `short-cut-names` of the pretrained models with, as associated values, the `url` to the
          associated pretrained vocabulary file.
        - **max_model_input_sizes** (`Dict[str, Optional[int]]`) -- A dictionary with, as keys, the `short-cut-names`
          of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model,
          or `None` if the model has no maximum input size.
        - **pretrained_init_configuration** (`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the
          `short-cut-names` of the pretrained models, and as associated values, a dictionary of specific arguments to
          pass to the `__init__` method of the tokenizer class for this pretrained model when loading the tokenizer
          with the [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`] method.
        - **model_input_names** (`List[str]`) -- A list of inputs expected in the forward pass of the model.
        - **padding_side** (`str`) -- The default value for the side on which the model should have padding applied.
          Should be `'right'` or `'left'`.
        - **truncation_side** (`str`) -- The default value for the side on which the model should have truncation
          applied. Should be `'right'` or `'left'`.

    Args:
        model_max_length (`int`, *optional*):
            The maximum length (in number of tokens) for the inputs to the transformer model. When the tokenizer is
            loaded with [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], this will be set to the
            value stored for the associated model in `max_model_input_sizes` (see above). If no value is provided, will
            default to VERY_LARGE_INTEGER (`int(1e30)`).
        padding_side (`str`, *optional*):
            The side on which the model should have padding applied. Should be selected between ['right', 'left'].
            Default value is picked from the class attribute of the same name.
        truncation_side (`str`, *optional*):
            The side on which the model should have truncation applied. Should be selected between ['right', 'left'].
            Default value is picked from the class attribute of the same name.
        model_input_names (`List[string]`, *optional*):
            The list of inputs accepted by the forward pass of the model (like `"token_type_ids"` or
            `"attention_mask"`). Default value is picked from the class attribute of the same name.
        bos_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing the beginning of a sentence. Will be associated to `self.bos_token` and
            `self.bos_token_id`.
        eos_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing the end of a sentence. Will be associated to `self.eos_token` and
            `self.eos_token_id`.
        unk_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing an out-of-vocabulary token. Will be associated to `self.unk_token` and
            `self.unk_token_id`.
        sep_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token separating two different sentences in the same input (used by BERT for instance). Will be
            associated to `self.sep_token` and `self.sep_token_id`.
        pad_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
            attention mechanisms or loss computation. Will be associated to `self.pad_token` and `self.pad_token_id`.
        cls_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing the class of the input (used by BERT for instance). Will be associated to
            `self.cls_token` and `self.cls_token_id`.
        mask_token (`str` or `tokenizers.AddedToken`, *optional*):
            A special token representing a masked token (used by masked-language modeling pretraining objectives, like
            BERT). Will be associated to `self.mask_token` and `self.mask_token_id`.
        additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*):
            A tuple or a list of additional special tokens. Add them here to ensure they won't be split by the
            tokenization process. Will be associated to `self.additional_special_tokens` and
            `self.additional_special_tokens_ids`.
        clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
            Whether or not the model should cleanup the spaces that were added when splitting the input text during the
            tokenization process.
"""


@add_end_docstrings(INIT_TOKENIZER_DOCSTRING)
class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin):
    """
    Base class for [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`].

    Handles shared (mostly boiler plate) methods for those two classes.
    """

    vocab_files_names: Dict[str, str] = {}
    pretrained_vocab_files_map: Dict[str, Dict[str, str]] = {}
    pretrained_init_configuration: Dict[str, Dict[str, Any]] = {}
    max_model_input_sizes: Dict[str, Optional[int]] = {}
    _auto_class: Optional[str] = None

    # first name has to correspond to main model input name
    # to make sure `tokenizer.pad(...)` works correctly
    model_input_names: List[str] = ["input_ids", "token_type_ids", "attention_mask"]
    padding_side: str = "right"
    truncation_side: str = "right"
    slow_tokenizer_class = None

    def __init__(self, **kwargs):
        # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
        self.init_inputs = ()
        self.init_kwargs = copy.deepcopy(kwargs)
        self.name_or_path = kwargs.pop("name_or_path", "")
        self._processor_class = kwargs.pop("processor_class", None)

        # For backward compatibility we fallback to set model_max_length from max_len if provided
        model_max_length = kwargs.pop("model_max_length", kwargs.pop("max_len", None))
        self.model_max_length = model_max_length if model_max_length is not None else VERY_LARGE_INTEGER

        # Padding and truncation side are right by default and overridden in subclasses. If specified in the kwargs, it
        # is changed.
        self.padding_side = kwargs.pop("padding_side", self.padding_side)
        if self.padding_side not in ["right", "left"]:
            raise ValueError(
                f"Padding side should be selected between 'right' and 'left', current value: {self.padding_side}"
            )

        self.truncation_side = kwargs.pop("truncation_side", self.truncation_side)
        if self.truncation_side not in ["right", "left"]:
            raise ValueError(
                f"Padding side should be selected between 'right' and 'left', current value: {self.truncation_side}"
            )

        self.model_input_names = kwargs.pop("model_input_names", self.model_input_names)

        # By default, cleaning tokenization spaces for both fast and slow tokenizers
        self.clean_up_tokenization_spaces = kwargs.pop("clean_up_tokenization_spaces", False)

        self.deprecation_warnings = (
            {}
        )  # Use to store when we have already noticed a deprecation warning (avoid overlogging).
        self._in_target_context_manager = False
        super().__init__(**kwargs)

    @property
    def max_len_single_sentence(self) -> int:
        """
        `int`: The maximum length of a sentence that can be fed to the model.
        """
        return self.model_max_length - self.num_special_tokens_to_add(pair=False)

    @property
    def max_len_sentences_pair(self) -> int:
        """
        `int`: The maximum combined length of a pair of sentences that can be fed to the model.
        """
        return self.model_max_length - self.num_special_tokens_to_add(pair=True)

    @max_len_single_sentence.setter
    def max_len_single_sentence(self, value) -> int:
        # For backward compatibility, allow to try to setup 'max_len_single_sentence'.
        if value == self.model_max_length - self.num_special_tokens_to_add(pair=False) and self.verbose:
            if not self.deprecation_warnings.get("max_len_single_sentence", False):
                logger.warning(
                    "Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up."
                )
            self.deprecation_warnings["max_len_single_sentence"] = True
        else:
            raise ValueError(
                "Setting 'max_len_single_sentence' is now deprecated. This value is automatically set up."
            )

    @max_len_sentences_pair.setter
    def max_len_sentences_pair(self, value) -> int:
        # For backward compatibility, allow to try to setup 'max_len_sentences_pair'.
        if value == self.model_max_length - self.num_special_tokens_to_add(pair=True) and self.verbose:
            if not self.deprecation_warnings.get("max_len_sentences_pair", False):
                logger.warning(
                    "Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up."
                )
            self.deprecation_warnings["max_len_sentences_pair"] = True
        else:
            raise ValueError("Setting 'max_len_sentences_pair' is now deprecated. This value is automatically set up.")

    def _set_processor_class(self, processor_class: str):
        """Sets processor class as an attribute."""
        self._processor_class = processor_class

    def __repr__(self) -> str:
        return (
            f"{self.__class__.__name__}(name_or_path='{self.name_or_path}',"
            f" vocab_size={self.vocab_size}, model_max_length={self.model_max_length}, is_fast={self.is_fast},"
            f" padding_side='{self.padding_side}', truncation_side='{self.truncation_side}',"
            f" special_tokens={self.special_tokens_map_extended}, clean_up_tokenization_spaces={self.clean_up_tokenization_spaces})"
        )

    def __len__(self) -> int:
        raise NotImplementedError()

    def get_vocab(self) -> Dict[str, int]:
        """
        Returns the vocabulary as a dictionary of token to index.

        `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the
        vocab.

        Returns:
            `Dict[str, int]`: The vocabulary.
        """
        raise NotImplementedError()

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        *init_inputs,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        **kwargs,
    ):
        r"""
        Instantiate a [`~tokenization_utils_base.PreTrainedTokenizerBase`] (or a derived class) from a predefined
        tokenizer.

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                Can be either:

                - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
                  Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                  user or organization name, like `dbmdz/bert-base-german-cased`.
                - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
                  using the [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`] method, e.g.,
                  `./my_model_directory/`.
                - (**Deprecated**, not applicable to all derived classes) A path or url to a single saved vocabulary
                  file (if and only if the tokenizer only requires a single vocabulary file like Bert or XLNet), e.g.,
                  `./my_model_directory/vocab.txt`.
            cache_dir (`str` or `os.PathLike`, *optional*):
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download the vocabulary files and override the cached versions if they
                exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Attempt to resume the download if such a file
                exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether or not to only rely on local files and not to attempt to download any files.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
                facebook/rag-token-base), specify it here.
            inputs (additional positional arguments, *optional*):
                Will be passed along to the Tokenizer `__init__` method.
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the Tokenizer `__init__` method. Can be used to set special tokens like `bos_token`,
                `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
                `additional_special_tokens`. See parameters in the `__init__` for more details.

        <Tip>

        Passing `use_auth_token=True` is required when you want to use a private model.

        </Tip>

        Examples:

        ```python
        # We can't instantiate directly the base class *PreTrainedTokenizerBase* so let's show our examples on a derived class: BertTokenizer
        # Download vocabulary from huggingface.co and cache.
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

        # Download vocabulary from huggingface.co (user-uploaded) and cache.
        tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-german-cased")

        # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
        tokenizer = BertTokenizer.from_pretrained("./test/saved_model/")

        # If the tokenizer uses a single vocabulary file, you can point directly to this file
        tokenizer = BertTokenizer.from_pretrained("./test/saved_model/my_vocab.txt")

        # You can link tokens to special vocabulary when instantiating
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", unk_token="<unk>")
        # You should be sure '<unk>' is in the vocabulary when doing that.
        # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
        assert tokenizer.unk_token == "<unk>"
        ```"""
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        subfolder = kwargs.pop("subfolder", None)
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
        commit_hash = kwargs.pop("_commit_hash", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        user_agent = {"file_type": "tokenizer", "from_auto_class": from_auto_class, "is_fast": "Fast" in cls.__name__}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        vocab_files = {}
        init_configuration = {}

        is_local = os.path.isdir(pretrained_model_name_or_path)
        single_file_id = None
        if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            if len(cls.vocab_files_names) > 1:
                raise ValueError(
                    f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is not "
                    "supported for this tokenizer. Use a model identifier or the path to a directory instead."
                )
            warnings.warn(
                f"Calling {cls.__name__}.from_pretrained() with the path to a single file or url is deprecated and "
                "won't be possible anymore in v5. Use a model identifier or the path to a directory instead.",
                FutureWarning,
            )
            file_id = list(cls.vocab_files_names.keys())[0]

            vocab_files[file_id] = pretrained_model_name_or_path
            single_file_id = file_id
        else:
            # At this point pretrained_model_name_or_path is either a directory or a model identifier name
            additional_files_names = {
                "added_tokens_file": ADDED_TOKENS_FILE,
                "special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE,
                "tokenizer_config_file": TOKENIZER_CONFIG_FILE,
            }
            vocab_files = {**cls.vocab_files_names, **additional_files_names}

            if "tokenizer_file" in vocab_files:
                # Try to get the tokenizer config to see if there are versioned tokenizer files.
                fast_tokenizer_file = FULL_TOKENIZER_FILE
                resolved_config_file = cached_file(
                    pretrained_model_name_or_path,
                    TOKENIZER_CONFIG_FILE,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    use_auth_token=token,
                    revision=revision,
                    local_files_only=local_files_only,
                    subfolder=subfolder,
                    user_agent=user_agent,
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                    _commit_hash=commit_hash,
                )
                commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
                if resolved_config_file is not None:
                    with open(resolved_config_file, encoding="utf-8") as reader:
                        tokenizer_config = json.load(reader)
                        if "fast_tokenizer_files" in tokenizer_config:
                            fast_tokenizer_file = get_fast_tokenizer_file(tokenizer_config["fast_tokenizer_files"])
                vocab_files["tokenizer_file"] = fast_tokenizer_file

        # Get files from url, cache, or disk depending on the case
        resolved_vocab_files = {}
        unresolved_files = []
        for file_id, file_path in vocab_files.items():
            if file_path is None:
                resolved_vocab_files[file_id] = None
            elif single_file_id == file_id:
                if os.path.isfile(file_path):
                    resolved_vocab_files[file_id] = file_path
                elif is_remote_url(file_path):
                    resolved_vocab_files[file_id] = download_url(file_path, proxies=proxies)
            else:
                resolved_vocab_files[file_id] = cached_file(
                    pretrained_model_name_or_path,
                    file_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    use_auth_token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=False,
                    _raise_exceptions_for_connection_errors=False,
                    _commit_hash=commit_hash,
                )
                commit_hash = extract_commit_hash(resolved_vocab_files[file_id], commit_hash)

        if len(unresolved_files) > 0:
            logger.info(
                f"Can't load following files from cache: {unresolved_files} and cannot check if these "
                "files are necessary for the tokenizer to operate."
            )

        if all(full_file_name is None for full_file_name in resolved_vocab_files.values()):
            raise EnvironmentError(
                f"Can't load tokenizer for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing all relevant files for a {cls.__name__} tokenizer."
            )

        for file_id, file_path in vocab_files.items():
            if file_id not in resolved_vocab_files:
                continue

            if is_local:
                logger.info(f"loading file {file_path}")
            else:
                logger.info(f"loading file {file_path} from cache at {resolved_vocab_files[file_id]}")

        return cls._from_pretrained(
            resolved_vocab_files,
            pretrained_model_name_or_path,
            init_configuration,
            *init_inputs,
            use_auth_token=token,
            cache_dir=cache_dir,
            local_files_only=local_files_only,
            _commit_hash=commit_hash,
            _is_local=is_local,
            **kwargs,
        )

    @classmethod
    def _from_pretrained(
        cls,
        resolved_vocab_files,
        pretrained_model_name_or_path,
        init_configuration,
        *init_inputs,
        use_auth_token=None,
        cache_dir=None,
        local_files_only=False,
        _commit_hash=None,
        _is_local=False,
        **kwargs,
    ):
        # We instantiate fast tokenizers based on a slow tokenizer if we don't have access to the tokenizer.json
        # file or if `from_slow` is set to True.
        from_slow = kwargs.get("from_slow", False)
        has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None
        if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None:
            slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained(
                copy.deepcopy(resolved_vocab_files),
                pretrained_model_name_or_path,
                copy.deepcopy(init_configuration),
                *init_inputs,
                use_auth_token=use_auth_token,
                cache_dir=cache_dir,
                local_files_only=local_files_only,
                _commit_hash=_commit_hash,
                **(copy.deepcopy(kwargs)),
            )
        else:
            slow_tokenizer = None

        # Prepare tokenizer initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None)
        if tokenizer_config_file is not None:
            with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle:
                init_kwargs = json.load(tokenizer_config_handle)
            # First attempt. We get tokenizer_class from tokenizer_config to check mismatch between tokenizers.
            config_tokenizer_class = init_kwargs.get("tokenizer_class")
            init_kwargs.pop("tokenizer_class", None)
            saved_init_inputs = init_kwargs.pop("init_inputs", ())
            if not init_inputs:
                init_inputs = saved_init_inputs
        else:
            config_tokenizer_class = None
            init_kwargs = init_configuration

        if "auto_map" in init_kwargs and not _is_local:
            # For backward compatibility with odl format.
            if isinstance(init_kwargs["auto_map"], (tuple, list)):
                init_kwargs["auto_map"] = {"AutoTokenizer": init_kwargs["auto_map"]}
            init_kwargs["auto_map"] = add_model_info_to_auto_map(
                init_kwargs["auto_map"], pretrained_model_name_or_path
            )

        if config_tokenizer_class is None:
            from .models.auto.configuration_auto import AutoConfig  # tests_ignore

            # Second attempt. If we have not yet found tokenizer_class, let's try to use the config.
            try:
                config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    use_auth_token=use_auth_token,
                    cache_dir=cache_dir,
                    local_files_only=local_files_only,
                    _commit_hash=_commit_hash,
                )
                config_tokenizer_class = config.tokenizer_class
            except (OSError, ValueError, KeyError):
                # skip if an error occurred.
                config = None
            if config_tokenizer_class is None:
                # Third attempt. If we have not yet found the original type of the tokenizer,
                # we are loading we see if we can infer it from the type of the configuration file
                from .models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES  # tests_ignore

                if hasattr(config, "model_type"):
                    model_type = config.model_type
                else:
                    # Fallback: use pattern matching on the string.
                    model_type = None
                    for pattern in TOKENIZER_MAPPING_NAMES.keys():
                        if pattern in str(pretrained_model_name_or_path):
                            model_type = pattern
                            break

                if model_type is not None:
                    config_tokenizer_class, config_tokenizer_class_fast = TOKENIZER_MAPPING_NAMES.get(
                        model_type, (None, None)
                    )
                    if config_tokenizer_class is None:
                        config_tokenizer_class = config_tokenizer_class_fast

        if config_tokenizer_class is not None:
            if cls.__name__.replace("Fast", "") != config_tokenizer_class.replace("Fast", ""):
                logger.warning(
                    "The tokenizer class you load from this checkpoint is not the same type as the class this"
                    " function is called from. It may result in unexpected tokenization. \nThe tokenizer class you"
                    f" load from this checkpoint is '{config_tokenizer_class}'. \nThe class this function is called"
                    f" from is '{cls.__name__}'."
                )

        # Update with newly provided kwargs
        init_kwargs.update(kwargs)

        # Convert AddedTokens serialized as dict to class instances
        def convert_added_tokens(obj: Union[AddedToken, Any]):
            if isinstance(obj, dict) and "__type" in obj and obj["__type"] == "AddedToken":
                obj.pop("__type")
                return AddedToken(**obj)
            elif isinstance(obj, (list, tuple)):
                return [convert_added_tokens(o) for o in obj]
            elif isinstance(obj, dict):
                return {k: convert_added_tokens(v) for k, v in obj.items()}
            return obj

        init_kwargs = convert_added_tokens(init_kwargs)

        # Set max length if needed
        if pretrained_model_name_or_path in cls.max_model_input_sizes:
            # if we're using a pretrained model, ensure the tokenizer
            # wont index sequences longer than the number of positional embeddings

            model_max_length = cls.max_model_input_sizes[pretrained_model_name_or_path]
            if model_max_length is not None and isinstance(model_max_length, (int, float)):
                model_max_length = min(init_kwargs.get("model_max_length", int(1e30)), model_max_length)
                # TODO(PVP) - uncomment following line in Transformers v5
                # init_kwargs["model_max_length"] = model_max_length
                # TODO(PVP) - remove in Transformers v5
                # ---
                init_kwargs["model_max_length"] = cls._eventually_correct_t5_max_length(
                    pretrained_model_name_or_path, model_max_length, init_kwargs.get("model_max_length")
                )
                # ---

        # Merge resolved_vocab_files arguments in init_kwargs.
        added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None)
        for args_name, file_path in resolved_vocab_files.items():
            if args_name not in init_kwargs:
                init_kwargs[args_name] = file_path

        if slow_tokenizer is not None:
            init_kwargs["__slow_tokenizer"] = slow_tokenizer

        init_kwargs["name_or_path"] = pretrained_model_name_or_path

        # Instantiate tokenizer.
        try:
            tokenizer = cls(*init_inputs, **init_kwargs)
        except OSError:
            raise OSError(
                "Unable to load vocabulary from file. "
                "Please check that the provided vocabulary is accessible and not corrupted."
            )

        # Save inputs and kwargs for saving and re-loading with ``save_pretrained``
        # Removed: Now done at the base class level
        # tokenizer.init_inputs = init_inputs
        # tokenizer.init_kwargs = init_kwargs

        # If there is a complementary special token map, load it
        special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None)
        if special_tokens_map_file is not None:
            with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle:
                special_tokens_map = json.load(special_tokens_map_handle)
            for key, value in special_tokens_map.items():
                if key in kwargs and kwargs[key]:
                    # This value has already been redefined by the kwargs
                    # We keep this new value and ignore the one stored in the special_tokens_map_file

                    continue

                if isinstance(value, dict):
                    value = AddedToken(**value)
                elif isinstance(value, list):
                    value = [AddedToken(**token) if isinstance(token, dict) else token for token in value]
                setattr(tokenizer, key, value)

        # Add supplementary tokens.
        special_tokens = tokenizer.all_special_tokens
        if added_tokens_file is not None:
            with open(added_tokens_file, encoding="utf-8") as added_tokens_handle:
                added_tok_encoder = json.load(added_tokens_handle)

            # Sort added tokens by index
            added_tok_encoder_sorted = sorted(added_tok_encoder.items(), key=lambda x: x[1])

            # Accumulate added tokens into batches of special/non-special tokens, because calling add_tokens() for
            # individual tokens would repeatedly rebuild a trie, which can be slow.
            is_last_special = None
            tokens = []

            for token, index in added_tok_encoder_sorted:
                current_index = len(tokenizer) + len(tokens)
                if has_tokenizer_file and index != current_index and tokenizer.convert_tokens_to_ids(token) != index:
                    # Tokenizer fast: added token needs to either be in the vocabulary with the proper index or the
                    # index is the current length of the tokenizer (not in vocabulary)
                    raise ValueError(
                        f"Wrong index found for {token}: should be {tokenizer.convert_tokens_to_ids(token)} but found "
                        f"{index}."
                    )
                elif not has_tokenizer_file and index != current_index:
                    # Tokenizer slow: added token cannot already be in the vocabulary so its index needs to be the
                    # current length of the tokenizer.
                    raise ValueError(
                        f"Non-consecutive added token '{token}' found. "
                        f"Should have index {current_index} but has index {index} in saved vocabulary."
                    )

                is_special = bool(token in special_tokens)
                if is_last_special is None or is_last_special == is_special:
                    tokens.append(token)
                else:
                    tokenizer.add_tokens(tokens, special_tokens=is_last_special)
                    tokens = [token]
                is_last_special = is_special

            if tokens:
                tokenizer.add_tokens(tokens, special_tokens=is_last_special)

        # Check all our special tokens are registered as "no split" token (we don't cut them) and are in the vocab
        added_tokens = tokenizer.sanitize_special_tokens()
        if added_tokens:
            logger.warning_advice(
                "Special tokens have been added in the vocabulary, make sure the associated word embeddings are"
                " fine-tuned or trained."
            )

        return tokenizer

    @staticmethod
    def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length):
        # This method should be deleted in Transformers v5
        # Its only purpose is to potentially throw a warning
        # that incorrectly defined max lengths of T5's tokenizer are used
        # which we will correct in Transformers v5.
        return max_model_length

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        legacy_format: Optional[bool] = None,
        filename_prefix: Optional[str] = None,
        push_to_hub: bool = False,
        **kwargs,
    ) -> Tuple[str]:
        """
        Save the full tokenizer state.


        This method make sure the full tokenizer can then be re-loaded using the
        [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] class method..

        Warning,None This won't save modifications you may have applied to the tokenizer after the instantiation (for
        instance, modifying `tokenizer.do_lower_case` after creation).

        Args:
            save_directory (`str` or `os.PathLike`): The path to a directory where the tokenizer will be saved.
            legacy_format (`bool`, *optional*):
                Only applicable for a fast tokenizer. If unset (default), will save the tokenizer in the unified JSON
                format as well as in legacy format if it exists, i.e. with tokenizer specific vocabulary and a separate
                added_tokens files.

                If `False`, will only save the tokenizer in the unified JSON format. This format is incompatible with
                "slow" tokenizers (not powered by the *tokenizers* library), so the tokenizer will not be able to be
                loaded in the corresponding "slow" tokenizer.

                If `True`, will save the tokenizer in legacy format. If the "slow" tokenizer doesn't exits, a value
                error is raised.
            filename_prefix (`str`, *optional*):
                A prefix to add to the names of the files saved by the tokenizer.
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.

        Returns:
            A tuple of `str`: The files saved.
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = self._create_repo(repo_id, **kwargs)
            files_timestamps = self._get_files_timestamps(save_directory)

        special_tokens_map_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
        )
        tokenizer_config_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
        )

        tokenizer_config = copy.deepcopy(self.init_kwargs)

        # TODO: Ensure the modified attributes (those are also in the __init__ kwargs) will give identical tokenizers
        # target_keys = self.init_kwargs.keys()
        target_keys = ["model_max_length", "clean_up_tokenization_spaces"]
        for k in target_keys:
            if hasattr(self, k):
                tokenizer_config[k] = getattr(self, k)

        if len(self.init_inputs) > 0:
            tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
        for file_id in self.vocab_files_names.keys():
            tokenizer_config.pop(file_id, None)

        # Sanitize AddedTokens
        def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True):
            if isinstance(obj, AddedToken):
                out = obj.__getstate__()
                if add_type_field:
                    out["__type"] = "AddedToken"
                return out
            elif isinstance(obj, (list, tuple)):
                return [convert_added_tokens(o, add_type_field=add_type_field) for o in obj]
            elif isinstance(obj, dict):
                return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()}
            return obj

        # add_type_field=True to allow dicts in the kwargs / differentiate from AddedToken serialization
        tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True)

        # Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
        tokenizer_class = self.__class__.__name__
        # Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
        if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
            tokenizer_class = tokenizer_class[:-4]
        tokenizer_config["tokenizer_class"] = tokenizer_class
        if getattr(self, "_auto_map", None) is not None:
            tokenizer_config["auto_map"] = self._auto_map
        if getattr(self, "_processor_class", None) is not None:
            tokenizer_config["processor_class"] = self._processor_class

        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=tokenizer_config)

        # remove private information
        if "name_or_path" in tokenizer_config:
            tokenizer_config.pop("name_or_path")
            tokenizer_config.pop("special_tokens_map_file", None)

        with open(tokenizer_config_file, "w", encoding="utf-8") as f:
            out_str = json.dumps(tokenizer_config, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
            f.write(out_str)
        logger.info(f"tokenizer config file saved in {tokenizer_config_file}")

        # Sanitize AddedTokens in special_tokens_map
        write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False)
        with open(special_tokens_map_file, "w", encoding="utf-8") as f:
            out_str = json.dumps(write_dict, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
            f.write(out_str)
        logger.info(f"Special tokens file saved in {special_tokens_map_file}")

        file_names = (tokenizer_config_file, special_tokens_map_file)

        save_files = self._save_pretrained(
            save_directory=save_directory,
            file_names=file_names,
            legacy_format=legacy_format,
            filename_prefix=filename_prefix,
        )

        if push_to_hub:
            self._upload_modified_files(
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
                token=kwargs.get("use_auth_token"),
            )

        return save_files

    def _save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        file_names: Tuple[str],
        legacy_format: Optional[bool] = None,
        filename_prefix: Optional[str] = None,
    ) -> Tuple[str]:
        """
        Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens.

        Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the
        specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`]
        """
        if legacy_format is False:
            raise ValueError(
                "Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format."
            )

        save_directory = str(save_directory)

        added_tokens_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE
        )
        added_vocab = self.get_added_vocab()
        if added_vocab:
            with open(added_tokens_file, "w", encoding="utf-8") as f:
                out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
                f.write(out_str)
                logger.info(f"added tokens file saved in {added_tokens_file}")

        vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix)

        return file_names + vocab_files + (added_tokens_file,)

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        """
        Save only the vocabulary of the tokenizer (vocabulary + added tokens).

        This method won't save the configuration and special token mappings of the tokenizer. Use
        [`~PreTrainedTokenizerFast._save_pretrained`] to save the whole state of the tokenizer.

        Args:
            save_directory (`str`):
                The directory in which to save the vocabulary.
            filename_prefix (`str`, *optional*):
                An optional prefix to add to the named of the saved files.

        Returns:
            `Tuple(str)`: Paths to the files saved.
        """
        raise NotImplementedError

    def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
        """
        Converts a string in a sequence of tokens, replacing unknown tokens with the `unk_token`.

        Args:
            text (`str`):
                The sequence to be encoded.
            pair (`str`, *optional*):
                A second sequence to be encoded with the first.
            add_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to add the special tokens associated with the corresponding model.
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the underlying model specific encode method. See details in
                [`~PreTrainedTokenizerBase.__call__`]

        Returns:
            `List[str]`: The list of tokens.
        """
        raise NotImplementedError

    @add_end_docstrings(
        ENCODE_KWARGS_DOCSTRING,
        """
            **kwargs: Passed along to the `.tokenize()` method.
        """,
        """
        Returns:
            `List[int]`, `torch.Tensor`, `tf.Tensor` or `np.ndarray`: The tokenized ids of the text.
        """,
    )
    def encode(
        self,
        text: Union[TextInput, PreTokenizedInput, EncodedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ) -> List[int]:
        """
        Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.

        Same as doing `self.convert_tokens_to_ids(self.tokenize(text))`.

        Args:
            text (`str`, `List[str]` or `List[int]`):
                The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
                `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
                method).
            text_pair (`str`, `List[str]` or `List[int]`, *optional*):
                Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
                the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
                method).
        """
        encoded_inputs = self.encode_plus(
            text,
            text_pair=text_pair,
            add_special_tokens=add_special_tokens,
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            stride=stride,
            return_tensors=return_tensors,
            **kwargs,
        )

        return encoded_inputs["input_ids"]

    def num_special_tokens_to_add(self, pair: bool = False) -> int:
        raise NotImplementedError

    def _get_padding_truncation_strategies(
        self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
    ):
        """
        Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy
        and pad_to_max_length) and behaviors.
        """
        old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
        old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)

        # Backward compatibility for previous behavior, maybe we should deprecate it:
        # If you only set max_length, it activates truncation for max_length
        if max_length is not None and padding is False and truncation is None:
            if verbose:
                if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False):
                    logger.warning(
                        "Truncation was not explicitly activated but `max_length` is provided a specific value, please"
                        " use `truncation=True` to explicitly truncate examples to max length. Defaulting to"
                        " 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the"
                        " tokenizer you can select this strategy more precisely by providing a specific strategy to"
                        " `truncation`."
                    )
                self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
            truncation = "longest_first"

        # Get padding strategy
        if padding is False and old_pad_to_max_length:
            if verbose:
                warnings.warn(
                    "The `pad_to_max_length` argument is deprecated and will be removed in a future version, "
                    "use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or "
                    "use `padding='max_length'` to pad to a max length. In this case, you can give a specific "
                    "length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the "
                    "maximal input size of the model (e.g. 512 for Bert).",
                    FutureWarning,
                )
            if max_length is None:
                padding_strategy = PaddingStrategy.LONGEST
            else:
                padding_strategy = PaddingStrategy.MAX_LENGTH
        elif padding is not False:
            if padding is True:
                if verbose:
                    if max_length is not None and (
                        truncation is None or truncation is False or truncation == "do_not_truncate"
                    ):
                        warnings.warn(
                            "`max_length` is ignored when `padding`=`True` and there is no truncation strategy. "
                            "To pad to max length, use `padding='max_length'`."
                        )
                    if old_pad_to_max_length is not False:
                        warnings.warn("Though `pad_to_max_length` = `True`, it is ignored because `padding`=`True`.")
                padding_strategy = PaddingStrategy.LONGEST  # Default to pad to the longest sequence in the batch
            elif not isinstance(padding, PaddingStrategy):
                padding_strategy = PaddingStrategy(padding)
            elif isinstance(padding, PaddingStrategy):
                padding_strategy = padding
        else:
            padding_strategy = PaddingStrategy.DO_NOT_PAD

        # Get truncation strategy
        if truncation is None and old_truncation_strategy != "do_not_truncate":
            if verbose:
                warnings.warn(
                    "The `truncation_strategy` argument is deprecated and will be removed in a future version, use"
                    " `truncation=True` to truncate examples to a max length. You can give a specific length with"
                    " `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the maximal input"
                    " size of the model (e.g. 512 for Bert).  If you have pairs of inputs, you can give a specific"
                    " truncation strategy selected among `truncation='only_first'` (will only truncate the first"
                    " sentence in the pairs) `truncation='only_second'` (will only truncate the second sentence in the"
                    " pairs) or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence"
                    " in the pairs).",
                    FutureWarning,
                )
            truncation_strategy = TruncationStrategy(old_truncation_strategy)
        elif truncation is not False and truncation is not None:
            if truncation is True:
                truncation_strategy = (
                    TruncationStrategy.LONGEST_FIRST
                )  # Default to truncate the longest sequences in pairs of inputs
            elif not isinstance(truncation, TruncationStrategy):
                truncation_strategy = TruncationStrategy(truncation)
            elif isinstance(truncation, TruncationStrategy):
                truncation_strategy = truncation
        else:
            truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE

        # Set max length if needed
        if max_length is None:
            if padding_strategy == PaddingStrategy.MAX_LENGTH:
                if self.model_max_length > LARGE_INTEGER:
                    if verbose:
                        if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False):
                            logger.warning(
                                "Asking to pad to max_length but no maximum length is provided and the model has no"
                                " predefined maximum length. Default to no padding."
                            )
                        self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
                    padding_strategy = PaddingStrategy.DO_NOT_PAD
                else:
                    max_length = self.model_max_length

            if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
                if self.model_max_length > LARGE_INTEGER:
                    if verbose:
                        if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False):
                            logger.warning(
                                "Asking to truncate to max_length but no maximum length is provided and the model has"
                                " no predefined maximum length. Default to no truncation."
                            )
                        self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True
                    truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
                else:
                    max_length = self.model_max_length

        # Test if we have a padding token
        if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0):
            raise ValueError(
                "Asking to pad but the tokenizer does not have a padding token. "
                "Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
                "or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
            )

        # Check that we will truncate to a multiple of pad_to_multiple_of if both are provided
        if (
            truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
            and padding_strategy != PaddingStrategy.DO_NOT_PAD
            and pad_to_multiple_of is not None
            and max_length is not None
            and (max_length % pad_to_multiple_of != 0)
        ):
            raise ValueError(
                "Truncation and padding are both activated but "
                f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
            )

        return padding_strategy, truncation_strategy, max_length, kwargs

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
        text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        text_pair_target: Optional[
            Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
        ] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
        sequences.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`, *optional*):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            text_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
                The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
                list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
                you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*):
                The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a
                list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized),
                you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
        """
        # To avoid duplicating
        all_kwargs = {
            "add_special_tokens": add_special_tokens,
            "padding": padding,
            "truncation": truncation,
            "max_length": max_length,
            "stride": stride,
            "is_split_into_words": is_split_into_words,
            "pad_to_multiple_of": pad_to_multiple_of,
            "return_tensors": return_tensors,
            "return_token_type_ids": return_token_type_ids,
            "return_attention_mask": return_attention_mask,
            "return_overflowing_tokens": return_overflowing_tokens,
            "return_special_tokens_mask": return_special_tokens_mask,
            "return_offsets_mapping": return_offsets_mapping,
            "return_length": return_length,
            "verbose": verbose,
        }
        all_kwargs.update(kwargs)
        if text is None and text_target is None:
            raise ValueError("You need to specify either `text` or `text_target`.")
        if text is not None:
            # The context manager will send the inputs as normal texts and not text_target, but we shouldn't change the
            # input mode in this case.
            if not self._in_target_context_manager:
                self._switch_to_input_mode()
            encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs)
        if text_target is not None:
            self._switch_to_target_mode()
            target_encodings = self._call_one(text=text_target, text_pair=text_pair_target, **all_kwargs)
        # Leave back tokenizer in input mode
        self._switch_to_input_mode()

        if text_target is None:
            return encodings
        elif text is None:
            return target_encodings
        else:
            encodings["labels"] = target_encodings["input_ids"]
            return encodings

    def _call_one(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        # Input type checking for clearer error
        def _is_valid_text_input(t):
            if isinstance(t, str):
                # Strings are fine
                return True
            elif isinstance(t, (list, tuple)):
                # List are fine as long as they are...
                if len(t) == 0:
                    # ... empty
                    return True
                elif isinstance(t[0], str):
                    # ... list of strings
                    return True
                elif isinstance(t[0], (list, tuple)):
                    # ... list with an empty list or with a list of strings
                    return len(t[0]) == 0 or isinstance(t[0][0], str)
                else:
                    return False
            else:
                return False

        if not _is_valid_text_input(text):
            raise ValueError(
                "text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) "
                "or `List[List[str]]` (batch of pretokenized examples)."
            )

        if text_pair is not None and not _is_valid_text_input(text_pair):
            raise ValueError(
                "text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) "
                "or `List[List[str]]` (batch of pretokenized examples)."
            )

        if is_split_into_words:
            is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
        else:
            is_batched = isinstance(text, (list, tuple))

        if is_batched:
            if isinstance(text_pair, str):
                raise TypeError(
                    "when tokenizing batches of text, `text_pair` must be a list or tuple with the same length as"
                    " `text`."
                )
            if text_pair is not None and len(text) != len(text_pair):
                raise ValueError(
                    f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
                    f" {len(text_pair)}."
                )
            batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
            return self.batch_encode_plus(
                batch_text_or_text_pairs=batch_text_or_text_pairs,
                add_special_tokens=add_special_tokens,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                stride=stride,
                is_split_into_words=is_split_into_words,
                pad_to_multiple_of=pad_to_multiple_of,
                return_tensors=return_tensors,
                return_token_type_ids=return_token_type_ids,
                return_attention_mask=return_attention_mask,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_offsets_mapping=return_offsets_mapping,
                return_length=return_length,
                verbose=verbose,
                **kwargs,
            )
        else:
            return self.encode_plus(
                text=text,
                text_pair=text_pair,
                add_special_tokens=add_special_tokens,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                stride=stride,
                is_split_into_words=is_split_into_words,
                pad_to_multiple_of=pad_to_multiple_of,
                return_tensors=return_tensors,
                return_token_type_ids=return_token_type_ids,
                return_attention_mask=return_attention_mask,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_offsets_mapping=return_offsets_mapping,
                return_length=return_length,
                verbose=verbose,
                **kwargs,
            )

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def encode_plus(
        self,
        text: Union[TextInput, PreTokenizedInput, EncodedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Tokenize and prepare for the model a sequence or a pair of sequences.

        <Tip warning={true}>

        This method is deprecated, `__call__` should be used instead.

        </Tip>

        Args:
            text (`str`, `List[str]` or `List[int]` (the latter only for not-fast tokenizers)):
                The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
                `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
                method).
            text_pair (`str`, `List[str]` or `List[int]`, *optional*):
                Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using
                the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
                method).
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        return self._encode_plus(
            text=text,
            text_pair=text_pair,
            add_special_tokens=add_special_tokens,
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            stride=stride,
            is_split_into_words=is_split_into_words,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            return_token_type_ids=return_token_type_ids,
            return_attention_mask=return_attention_mask,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_offsets_mapping=return_offsets_mapping,
            return_length=return_length,
            verbose=verbose,
            **kwargs,
        )

    def _encode_plus(
        self,
        text: Union[TextInput, PreTokenizedInput, EncodedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        raise NotImplementedError

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def batch_encode_plus(
        self,
        batch_text_or_text_pairs: Union[
            List[TextInput],
            List[TextInputPair],
            List[PreTokenizedInput],
            List[PreTokenizedInputPair],
            List[EncodedInput],
            List[EncodedInputPair],
        ],
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.

        <Tip warning={true}>

        This method is deprecated, `__call__` should be used instead.

        </Tip>

        Args:
            batch_text_or_text_pairs (`List[str]`, `List[Tuple[str, str]]`, `List[List[str]]`, `List[Tuple[List[str], List[str]]]`, and for not-fast tokenizers, also `List[List[int]]`, `List[Tuple[List[int], List[int]]]`):
                Batch of sequences or pair of sequences to be encoded. This can be a list of
                string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see
                details in `encode_plus`).
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        return self._batch_encode_plus(
            batch_text_or_text_pairs=batch_text_or_text_pairs,
            add_special_tokens=add_special_tokens,
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            stride=stride,
            is_split_into_words=is_split_into_words,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            return_token_type_ids=return_token_type_ids,
            return_attention_mask=return_attention_mask,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_offsets_mapping=return_offsets_mapping,
            return_length=return_length,
            verbose=verbose,
            **kwargs,
        )

    def _batch_encode_plus(
        self,
        batch_text_or_text_pairs: Union[
            List[TextInput],
            List[TextInputPair],
            List[PreTokenizedInput],
            List[PreTokenizedInputPair],
            List[EncodedInput],
            List[EncodedInputPair],
        ],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        raise NotImplementedError

    def pad(
        self,
        encoded_inputs: Union[
            BatchEncoding,
            List[BatchEncoding],
            Dict[str, EncodedInput],
            Dict[str, List[EncodedInput]],
            List[Dict[str, EncodedInput]],
        ],
        padding: Union[bool, str, PaddingStrategy] = True,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        verbose: bool = True,
    ) -> BatchEncoding:
        """
        Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
        in the batch.

        Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
        `self.pad_token_id` and `self.pad_token_type_id`).

        Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the
        text followed by a call to the `pad` method to get a padded encoding.

        <Tip>

        If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
        result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
        PyTorch tensors, you will lose the specific device of your tensors however.

        </Tip>

        Args:
            encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
                Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
                tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
                List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
                collate function.

                Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
                the note above for the return type.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
                 Select a strategy to pad the returned sequences (according to the model's padding side and padding
                 index) among:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            return_attention_mask (`bool`, *optional*):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific tokenizer's default, defined by the `return_outputs` attribute.

                [What are attention masks?](../glossary#attention-mask)
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            verbose (`bool`, *optional*, defaults to `True`):
                Whether or not to print more information and warnings.
        """
        if self.__class__.__name__.endswith("Fast"):
            if not self.deprecation_warnings.get("Asking-to-pad-a-fast-tokenizer", False):
                logger.warning_advice(
                    f"You're using a {self.__class__.__name__} tokenizer. Please note that with a fast tokenizer,"
                    " using the `__call__` method is faster than using a method to encode the text followed by a call"
                    " to the `pad` method to get a padded encoding."
                )
                self.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True

        # If we have a list of dicts, let's convert it in a dict of lists
        # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
        if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
            encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}

        # The model's main input name, usually `input_ids`, has be passed for padding
        if self.model_input_names[0] not in encoded_inputs:
            raise ValueError(
                "You should supply an encoding or a list of encodings to this method "
                f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
            )

        required_input = encoded_inputs[self.model_input_names[0]]

        if required_input is None or (isinstance(required_input, Sized) and len(required_input) == 0):
            if return_attention_mask:
                encoded_inputs["attention_mask"] = []
            return encoded_inputs

        # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
        # and rebuild them afterwards if no return_tensors is specified
        # Note that we lose the specific device the tensor may be on for PyTorch

        first_element = required_input[0]
        if isinstance(first_element, (list, tuple)):
            # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
            for item in required_input:
                if len(item) != 0:
                    first_element = item[0]
                    break
        # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
        if not isinstance(first_element, (int, list, tuple)):
            if is_tf_tensor(first_element):
                return_tensors = "tf" if return_tensors is None else return_tensors
            elif is_torch_tensor(first_element):
                return_tensors = "pt" if return_tensors is None else return_tensors
            elif isinstance(first_element, np.ndarray):
                return_tensors = "np" if return_tensors is None else return_tensors
            else:
                raise ValueError(
                    f"type of {first_element} unknown: {type(first_element)}. "
                    "Should be one of a python, numpy, pytorch or tensorflow object."
                )

            for key, value in encoded_inputs.items():
                encoded_inputs[key] = to_py_obj(value)

        # Convert padding_strategy in PaddingStrategy
        padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
            padding=padding, max_length=max_length, verbose=verbose
        )

        required_input = encoded_inputs[self.model_input_names[0]]
        if required_input and not isinstance(required_input[0], (list, tuple)):
            encoded_inputs = self._pad(
                encoded_inputs,
                max_length=max_length,
                padding_strategy=padding_strategy,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )
            return BatchEncoding(encoded_inputs, tensor_type=return_tensors)

        batch_size = len(required_input)
        assert all(
            len(v) == batch_size for v in encoded_inputs.values()
        ), "Some items in the output dictionary have a different batch size than others."

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = max(len(inputs) for inputs in required_input)
            padding_strategy = PaddingStrategy.MAX_LENGTH

        batch_outputs = {}
        for i in range(batch_size):
            inputs = {k: v[i] for k, v in encoded_inputs.items()}
            outputs = self._pad(
                inputs,
                max_length=max_length,
                padding_strategy=padding_strategy,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        return BatchEncoding(batch_outputs, tensor_type=return_tensors)

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create the token type IDs corresponding to the sequences passed. [What are token type
        IDs?](../glossary#token-type-ids)

        Should be overridden in a subclass if the model has a special way of building those.

        Args:
            token_ids_0 (`List[int]`): The first tokenized sequence.
            token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.

        Returns:
            `List[int]`: The token type ids.
        """
        if token_ids_1 is None:
            return len(token_ids_0) * [0]
        return [0] * len(token_ids_0) + [1] * len(token_ids_1)

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens.

        This implementation does not add special tokens and this method should be overridden in a subclass.

        Args:
            token_ids_0 (`List[int]`): The first tokenized sequence.
            token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.

        Returns:
            `List[int]`: The model input with special tokens.
        """
        if token_ids_1 is None:
            return token_ids_0
        return token_ids_0 + token_ids_1

    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def prepare_for_model(
        self,
        ids: List[int],
        pair_ids: Optional[List[int]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
        adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
        different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
        overflowing tokens. Such a combination of arguments will raise an error.

        Args:
            ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_tokens_to_ids` methods.
            pair_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_tokens_to_ids` methods.
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        pair = bool(pair_ids is not None)
        len_ids = len(ids)
        len_pair_ids = len(pair_ids) if pair else 0

        if return_token_type_ids and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )

        if (
            return_overflowing_tokens
            and truncation_strategy == TruncationStrategy.LONGEST_FIRST
            and pair_ids is not None
        ):
            raise ValueError(
                "Not possible to return overflowing tokens for pair of sequences with the "
                "`longest_first`. Please select another truncation strategy than `longest_first`, "
                "for instance `only_second` or `only_first`."
            )

        # Load from model defaults
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        encoded_inputs = {}

        # Compute the total size of the returned encodings
        total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)

        # Truncation: Handle max sequence length
        overflowing_tokens = []
        if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
            ids, pair_ids, overflowing_tokens = self.truncate_sequences(
                ids,
                pair_ids=pair_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )

        if return_overflowing_tokens:
            encoded_inputs["overflowing_tokens"] = overflowing_tokens
            encoded_inputs["num_truncated_tokens"] = total_len - max_length

        # Add special tokens
        if add_special_tokens:
            sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
            token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
        else:
            sequence = ids + pair_ids if pair else ids
            token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])

        # Build output dictionary
        encoded_inputs["input_ids"] = sequence
        if return_token_type_ids:
            encoded_inputs["token_type_ids"] = token_type_ids
        if return_special_tokens_mask:
            if add_special_tokens:
                encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
            else:
                encoded_inputs["special_tokens_mask"] = [0] * len(sequence)

        # Check lengths
        self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)

        # Padding
        if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
            encoded_inputs = self.pad(
                encoded_inputs,
                max_length=max_length,
                padding=padding_strategy.value,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )

        if return_length:
            encoded_inputs["length"] = len(encoded_inputs["input_ids"])

        batch_outputs = BatchEncoding(
            encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
        )

        return batch_outputs

    def truncate_sequences(
        self,
        ids: List[int],
        pair_ids: Optional[List[int]] = None,
        num_tokens_to_remove: int = 0,
        truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
        stride: int = 0,
    ) -> Tuple[List[int], List[int], List[int]]:
        """
        Truncates a sequence pair in-place following the strategy.

        Args:
            ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_tokens_to_ids` methods.
            pair_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_tokens_to_ids` methods.
            num_tokens_to_remove (`int`, *optional*, defaults to 0):
                Number of tokens to remove using the truncation strategy.
            truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
                The strategy to follow for truncation. Can be:

                - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will truncate
                  token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
                  batch of pairs) is provided.
                - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
                  than the model maximum admissible input size).
            stride (`int`, *optional*, defaults to 0):
                If set to a positive number, the overflowing tokens returned will contain some tokens from the main
                sequence returned. The value of this argument defines the number of additional tokens.

        Returns:
            `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
            overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
            of sequences (or a batch of pairs) is provided.
        """
        if num_tokens_to_remove <= 0:
            return ids, pair_ids, []

        if not isinstance(truncation_strategy, TruncationStrategy):
            truncation_strategy = TruncationStrategy(truncation_strategy)

        overflowing_tokens = []
        if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
            truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
        ):
            if len(ids) > num_tokens_to_remove:
                window_len = min(len(ids), stride + num_tokens_to_remove)
                if self.truncation_side == "left":
                    overflowing_tokens = ids[:window_len]
                    ids = ids[num_tokens_to_remove:]
                elif self.truncation_side == "right":
                    overflowing_tokens = ids[-window_len:]
                    ids = ids[:-num_tokens_to_remove]
                else:
                    raise ValueError(f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'.")

            else:
                error_msg = (
                    f"We need to remove {num_tokens_to_remove} to truncate the input "
                    f"but the first sequence has a length {len(ids)}. "
                )
                if truncation_strategy == TruncationStrategy.ONLY_FIRST:
                    error_msg = (
                        error_msg + "Please select another truncation strategy than "
                        f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
                    )
                logger.error(error_msg)
        elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
            logger.warning(
                "Be aware, overflowing tokens are not returned for the setting you have chosen,"
                f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
                "truncation strategy. So the returned list will always be empty even if some "
                "tokens have been removed."
            )
            for _ in range(num_tokens_to_remove):
                if pair_ids is None or len(ids) > len(pair_ids):
                    if self.truncation_side == "right":
                        ids = ids[:-1]
                    elif self.truncation_side == "left":
                        ids = ids[1:]
                    else:
                        raise ValueError("invalid truncation strategy:" + str(self.truncation_side))
                else:
                    if self.truncation_side == "right":
                        pair_ids = pair_ids[:-1]
                    elif self.truncation_side == "left":
                        pair_ids = pair_ids[1:]
                    else:
                        raise ValueError("invalid truncation strategy:" + str(self.truncation_side))
        elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
            if len(pair_ids) > num_tokens_to_remove:
                window_len = min(len(pair_ids), stride + num_tokens_to_remove)
                if self.truncation_side == "right":
                    overflowing_tokens = pair_ids[-window_len:]
                    pair_ids = pair_ids[:-num_tokens_to_remove]
                elif self.truncation_side == "left":
                    overflowing_tokens = pair_ids[:window_len]
                    pair_ids = pair_ids[num_tokens_to_remove:]
                else:
                    raise ValueError("invalid truncation strategy:" + str(self.truncation_side))
            else:
                logger.error(
                    f"We need to remove {num_tokens_to_remove} to truncate the input "
                    f"but the second sequence has a length {len(pair_ids)}. "
                    f"Please select another truncation strategy than {truncation_strategy}, "
                    "for instance 'longest_first' or 'only_first'."
                )

        return (ids, pair_ids, overflowing_tokens)

    def _pad(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        """
        Pad encoded inputs (on left/right and up to predefined length or max length in the batch)

        Args:
            encoded_inputs:
                Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
            max_length: maximum length of the returned list and optionally padding length (see below).
                Will truncate by taking into account the special tokens.
            padding_strategy: PaddingStrategy to use for padding.

                - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
                - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
                - PaddingStrategy.DO_NOT_PAD: Do not pad
                The tokenizer padding sides are defined in self.padding_side:

                    - 'left': pads on the left of the sequences
                    - 'right': pads on the right of the sequences
            pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
                This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            return_attention_mask:
                (optional) Set to False to avoid returning attention mask (default: set to model specifics)
        """
        # Load from model defaults
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        required_input = encoded_inputs[self.model_input_names[0]]

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = len(required_input)

        if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length

        # Initialize attention mask if not present.
        if return_attention_mask and "attention_mask" not in encoded_inputs:
            encoded_inputs["attention_mask"] = [1] * len(required_input)

        if needs_to_be_padded:
            difference = max_length - len(required_input)

            if self.padding_side == "right":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = (
                        encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
                    )
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
                encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
            elif self.padding_side == "left":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
                        "token_type_ids"
                    ]
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
                encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
            else:
                raise ValueError("Invalid padding strategy:" + str(self.padding_side))

        return encoded_inputs

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        """
        Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we
        often want to remove sub-word tokenization artifacts at the same time.

        Args:
            tokens (`List[str]`): The token to join in a string.

        Returns:
            `str`: The joined tokens.
        """
        raise NotImplementedError

    def batch_decode(
        self,
        sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        **kwargs,
    ) -> List[str]:
        """
        Convert a list of lists of token ids into a list of strings by calling decode.

        Args:
            sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
                List of tokenized input ids. Can be obtained using the `__call__` method.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens in the decoding.
            clean_up_tokenization_spaces (`bool`, *optional*):
                Whether or not to clean up the tokenization spaces. If `None`, will default to
                `self.clean_up_tokenization_spaces`.
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the underlying model specific decode method.

        Returns:
            `List[str]`: The list of decoded sentences.
        """
        return [
            self.decode(
                seq,
                skip_special_tokens=skip_special_tokens,
                clean_up_tokenization_spaces=clean_up_tokenization_spaces,
                **kwargs,
            )
            for seq in sequences
        ]

    def decode(
        self,
        token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        **kwargs,
    ) -> str:
        """
        Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
        tokens and clean up tokenization spaces.

        Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.

        Args:
            token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
                List of tokenized input ids. Can be obtained using the `__call__` method.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens in the decoding.
            clean_up_tokenization_spaces (`bool`, *optional*):
                Whether or not to clean up the tokenization spaces. If `None`, will default to
                `self.clean_up_tokenization_spaces`.
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the underlying model specific decode method.

        Returns:
            `str`: The decoded sentence.
        """
        # Convert inputs to python lists
        token_ids = to_py_obj(token_ids)

        return self._decode(
            token_ids=token_ids,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    def _decode(
        self,
        token_ids: Union[int, List[int]],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        **kwargs,
    ) -> str:
        raise NotImplementedError

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.

        Args:
            token_ids_0 (`List[int]`):
                List of ids of the first sequence.
            token_ids_1 (`List[int]`, *optional*):
                List of ids of the second sequence.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        assert already_has_special_tokens and token_ids_1 is None, (
            "You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
            "Please use a slow (full python) tokenizer to activate this argument. "
            "Or set `return_special_tokens_mask=True` when calling the encoding method "
            "to get the special tokens mask in any tokenizer. "
        )

        all_special_ids = self.all_special_ids  # cache the property

        special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0]

        return special_tokens_mask

    @staticmethod
    def clean_up_tokenization(out_string: str) -> str:
        """
        Clean up a list of simple English tokenization artifacts like spaces before punctuations and abbreviated forms.

        Args:
            out_string (`str`): The text to clean up.

        Returns:
            `str`: The cleaned-up string.
        """
        out_string = (
            out_string.replace(" .", ".")
            .replace(" ?", "?")
            .replace(" !", "!")
            .replace(" ,", ",")
            .replace(" ' ", "'")
            .replace(" n't", "n't")
            .replace(" 'm", "'m")
            .replace(" 's", "'s")
            .replace(" 've", "'ve")
            .replace(" 're", "'re")
        )
        return out_string

    def _eventual_warn_about_too_long_sequence(self, ids: List[int], max_length: Optional[int], verbose: bool):
        """
        Depending on the input and internal state we might trigger a warning about a sequence that is too long for its
        corresponding model

        Args:
            ids (`List[str]`): The ids produced by the tokenization
            max_length (`int`, *optional*): The max_length desired (does not trigger a warning if it is set)
            verbose (`bool`): Whether or not to print more information and warnings.

        """
        if max_length is None and len(ids) > self.model_max_length and verbose:
            if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False):
                logger.warning(
                    "Token indices sequence length is longer than the specified maximum sequence length "
                    f"for this model ({len(ids)} > {self.model_max_length}). Running this sequence through the model "
                    "will result in indexing errors"
                )
            self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True

    def _switch_to_input_mode(self):
        """
        Private method to put the tokenizer in input mode (when it has different modes for input/outputs)
        """
        pass

    def _switch_to_target_mode(self):
        """
        Private method to put the tokenizer in target mode (when it has different modes for input/outputs)
        """
        pass

    @contextmanager
    def as_target_tokenizer(self):
        """
        Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to
        sequence-to-sequence models that need a slightly different processing for the labels.
        """
        warnings.warn(
            "`as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your "
            "labels by using the argument `text_target` of the regular `__call__` method (either in the same call as "
            "your input texts if you use the same keyword arguments, or in a separate call."
        )
        self._switch_to_target_mode()
        self._in_target_context_manager = True
        yield
        self._in_target_context_manager = False
        self._switch_to_input_mode()

    @classmethod
    def register_for_auto_class(cls, auto_class="AutoTokenizer"):
        """
        Register this class with a given auto class. This should only be used for custom tokenizers as the ones in the
        library are already mapped with `AutoTokenizer`.

        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoTokenizer"`):
                The auto class to register this new tokenizer with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

    def prepare_seq2seq_batch(
        self,
        src_texts: List[str],
        tgt_texts: Optional[List[str]] = None,
        max_length: Optional[int] = None,
        max_target_length: Optional[int] = None,
        padding: str = "longest",
        return_tensors: str = None,
        truncation: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepare model inputs for translation. For best performance, translate one sentence at a time.

        Arguments:
            src_texts (`List[str]`):
                List of documents to summarize or source language texts.
            tgt_texts (`list`, *optional*):
                List of summaries or target language texts.
            max_length (`int`, *optional*):
                Controls the maximum length for encoder inputs (documents to summarize or source language texts) If
                left unset or set to `None`, this will use the predefined model maximum length if a maximum length is
                required by one of the truncation/padding parameters. If the model has no specific maximum input length
                (like XLNet) truncation/padding to a maximum length will be deactivated.
            max_target_length (`int`, *optional*):
                Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set
                to `None`, this will use the max_length value.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Activates and controls padding. Accepts the following values:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `True`):
                Activates and controls truncation. Accepts the following values:

                - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
                  to the maximum acceptable input length for the model if that argument is not provided. This will
                  truncate token by token, removing a token from the longest sequence in the pair if a pair of
                  sequences (or a batch of pairs) is provided.
                - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
                  greater than the model maximum admissible input size).
            **kwargs:
                Additional keyword arguments passed along to `self.__call__`.

        Return:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to the encoder.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
            - **labels** -- List of token ids for tgt_texts.

            The full set of keys `[input_ids, attention_mask, labels]`, will only be returned if tgt_texts is passed.
            Otherwise, input_ids, attention_mask will be the only keys.
        """
        # docstyle-ignore
        formatted_warning = """
`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of HuggingFace Transformers. Use the regular
`__call__` method to prepare your inputs and targets.

Here is a short example:

model_inputs = tokenizer(src_texts, text_target=tgt_texts, ...)

If you either need to use different keyword arguments for the source and target texts, you should do two calls like
this:

model_inputs = tokenizer(src_texts, ...)
labels = tokenizer(text_target=tgt_texts, ...)
model_inputs["labels"] = labels["input_ids"]

See the documentation of your specific tokenizer for more details on the specific arguments to the tokenizer of choice.
For a more complete example, see the implementation of `prepare_seq2seq_batch`.
"""
        warnings.warn(formatted_warning, FutureWarning)
        # mBART-specific kwargs that should be ignored by other models.
        kwargs.pop("src_lang", None)
        kwargs.pop("tgt_lang", None)
        if max_length is None:
            max_length = self.model_max_length
        model_inputs = self(
            src_texts,
            add_special_tokens=True,
            return_tensors=return_tensors,
            max_length=max_length,
            padding=padding,
            truncation=truncation,
            **kwargs,
        )
        if tgt_texts is None:
            return model_inputs
        # Process tgt_texts
        if max_target_length is None:
            max_target_length = max_length
        with self.as_target_tokenizer():
            labels = self(
                tgt_texts,
                add_special_tokens=True,
                return_tensors=return_tensors,
                padding=padding,
                max_length=max_target_length,
                truncation=truncation,
                **kwargs,
            )
        model_inputs["labels"] = labels["input_ids"]
        return model_inputs


def get_fast_tokenizer_file(tokenization_files: List[str]) -> str:
    """
    Get the tokenization file to use for this version of transformers.

    Args:
        tokenization_files (`List[str]`): The list of available configuration files.

    Returns:
        `str`: The tokenization file to use.
    """
    tokenizer_files_map = {}
    for file_name in tokenization_files:
        search = _re_tokenizer_file.search(file_name)
        if search is not None:
            v = search.groups()[0]
            tokenizer_files_map[v] = file_name
    available_versions = sorted(tokenizer_files_map.keys())

    # Defaults to FULL_TOKENIZER_FILE and then try to look at some newer versions.
    tokenizer_file = FULL_TOKENIZER_FILE
    transformers_version = version.parse(__version__)
    for v in available_versions:
        if version.parse(v) <= transformers_version:
            tokenizer_file = tokenizer_files_map[v]
        else:
            # No point going further since the versions are sorted.
            break

    return tokenizer_file


# To update the docstring, we need to copy the method, otherwise we change the original docstring.
PreTrainedTokenizerBase.push_to_hub = copy_func(PreTrainedTokenizerBase.push_to_hub)
if PreTrainedTokenizerBase.push_to_hub.__doc__ is not None:
    PreTrainedTokenizerBase.push_to_hub.__doc__ = PreTrainedTokenizerBase.push_to_hub.__doc__.format(
        object="tokenizer", object_class="AutoTokenizer", object_files="tokenizer files"
    )