File size: 33,481 Bytes
df3cdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
 Tokenization classes for fast tokenizers (provided by HuggingFace's tokenizers library). For slow (python) tokenizers
 see tokenization_utils.py
"""
import copy
import json
import os
from collections import defaultdict
from typing import Any, Dict, List, Optional, Tuple, Union

import tokenizers.pre_tokenizers as pre_tokenizers_fast
from tokenizers import Encoding as EncodingFast
from tokenizers import Tokenizer as TokenizerFast
from tokenizers.decoders import Decoder as DecoderFast
from tokenizers.trainers import BpeTrainer, UnigramTrainer, WordLevelTrainer, WordPieceTrainer

from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers.tokenization_utils import PreTrainedTokenizer
from .tokenization_utils_base import (
    INIT_TOKENIZER_DOCSTRING,
    AddedToken,
    BatchEncoding,
    PreTokenizedInput,
    PreTokenizedInputPair,
    PreTrainedTokenizerBase,
    SpecialTokensMixin,
    TextInput,
    TextInputPair,
    TruncationStrategy,
)
from transformers.utils import PaddingStrategy, add_end_docstrings, logging


logger = logging.get_logger(__name__)

# Fast tokenizers (provided by HuggingFace tokenizer's library) can be saved in a single file
TOKENIZER_FILE = "tokenizer.json"
SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json"
TOKENIZER_CONFIG_FILE = "tokenizer_config.json"

# Slow tokenizers have an additional added tokens files
ADDED_TOKENS_FILE = "added_tokens.json"

INIT_TOKENIZER_DOCSTRING += """
        tokenizer_object ([`tokenizers.Tokenizer`]):
            A [`tokenizers.Tokenizer`] object from 🤗 tokenizers to instantiate from. See [Using tokenizers from 🤗
            tokenizers](../fast_tokenizers) for more information.
        tokenizer_file ([`str`]):
            A path to a local JSON file representing a previously serialized [`tokenizers.Tokenizer`] object from 🤗
            tokenizers.
"""

MODEL_TO_TRAINER_MAPPING = {
    "BPE": BpeTrainer,
    "Unigram": UnigramTrainer,
    "WordLevel": WordLevelTrainer,
    "WordPiece": WordPieceTrainer,
}

VOCAB_FILES_NAMES = {"tokenizer_file": TOKENIZER_FILE}


@add_end_docstrings(INIT_TOKENIZER_DOCSTRING)
class PreTrainedTokenizerFast(PreTrainedTokenizerBase):
    """
    Base class for all fast tokenizers (wrapping HuggingFace tokenizers library).

    Inherits from [`~tokenization_utils_base.PreTrainedTokenizerBase`].

    Handles all the shared methods for tokenization and special tokens, as well as methods for
    downloading/caching/loading pretrained tokenizers, as well as adding tokens to the vocabulary.

    This class also contains the added tokens in a unified way on top of all tokenizers so we don't have to handle the
    specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
    """

    vocab_files_names = VOCAB_FILES_NAMES
    slow_tokenizer_class: PreTrainedTokenizer = None
    can_save_slow_tokenizer: bool = True

    def __init__(self, *args, **kwargs):
        tokenizer_object = kwargs.pop("tokenizer_object", None)
        slow_tokenizer = kwargs.pop("__slow_tokenizer", None)
        fast_tokenizer_file = kwargs.pop("tokenizer_file", None)
        from_slow = kwargs.pop("from_slow", False)
        if from_slow and slow_tokenizer is None and self.slow_tokenizer_class is None:
            raise ValueError(
                "Cannot instantiate this tokenizer from a slow version. If it's based on sentencepiece, make sure you "
                "have sentencepiece installed."
            )

        if tokenizer_object is not None:
            fast_tokenizer = copy.deepcopy(tokenizer_object)
        elif fast_tokenizer_file is not None and not from_slow:
            # We have a serialization from tokenizers which let us directly build the backend
            fast_tokenizer = TokenizerFast.from_file(fast_tokenizer_file)
        elif slow_tokenizer is not None:
            # We need to convert a slow tokenizer to build the backend
            fast_tokenizer = convert_slow_tokenizer(slow_tokenizer)
        elif self.slow_tokenizer_class is not None:
            # We need to create and convert a slow tokenizer to build the backend
            slow_tokenizer = self.slow_tokenizer_class(*args, **kwargs)
            fast_tokenizer = convert_slow_tokenizer(slow_tokenizer)
        else:
            raise ValueError(
                "Couldn't instantiate the backend tokenizer from one of: \n"
                "(1) a `tokenizers` library serialization file, \n"
                "(2) a slow tokenizer instance to convert or \n"
                "(3) an equivalent slow tokenizer class to instantiate and convert. \n"
                "You need to have sentencepiece installed to convert a slow tokenizer to a fast one."
            )

        self._tokenizer = fast_tokenizer

        if slow_tokenizer is not None:
            kwargs.update(slow_tokenizer.init_kwargs)

        self._decode_use_source_tokenizer = False

        # We call this after having initialized the backend tokenizer because we update it.
        super().__init__(**kwargs)

    @property
    def is_fast(self) -> bool:
        return True

    @property
    def vocab_size(self) -> int:
        """
        `int`: Size of the base vocabulary (without the added tokens).
        """
        return self._tokenizer.get_vocab_size(with_added_tokens=False)

    def get_vocab(self) -> Dict[str, int]:
        return self._tokenizer.get_vocab(with_added_tokens=True)

    @property
    def vocab(self) -> Dict[str, int]:
        return self.get_vocab()

    def get_added_vocab(self) -> Dict[str, int]:
        """
        Returns the added tokens in the vocabulary as a dictionary of token to index.

        Returns:
            `Dict[str, int]`: The added tokens.
        """
        base_vocab = self._tokenizer.get_vocab(with_added_tokens=False)
        full_vocab = self._tokenizer.get_vocab(with_added_tokens=True)
        added_vocab = {tok: index for tok, index in full_vocab.items() if tok not in base_vocab}
        return added_vocab

    def __len__(self) -> int:
        """
        Size of the full vocabulary with the added tokens.
        """
        return self._tokenizer.get_vocab_size(with_added_tokens=True)

    @property
    def backend_tokenizer(self) -> TokenizerFast:
        """
        `tokenizers.implementations.BaseTokenizer`: The Rust tokenizer used as a backend.
        """
        return self._tokenizer

    @property
    def decoder(self) -> DecoderFast:
        """
        `tokenizers.decoders.Decoder`: The Rust decoder for this tokenizer.
        """
        return self._tokenizer.decoder

    def _convert_encoding(
        self,
        encoding: EncodingFast,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
    ) -> Tuple[Dict[str, Any], List[EncodingFast]]:
        """
        Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list
        of encodings, take care of building a batch from overflowing tokens.

        Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are
        lists (overflows) of lists (tokens).

        Output shape: (overflows, sequence length)
        """
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        if return_overflowing_tokens and encoding.overflowing is not None:
            encodings = [encoding] + encoding.overflowing
        else:
            encodings = [encoding]

        encoding_dict = defaultdict(list)
        for e in encodings:
            encoding_dict["input_ids"].append(e.ids)

            if return_token_type_ids:
                encoding_dict["token_type_ids"].append(e.type_ids)
            if return_attention_mask:
                encoding_dict["attention_mask"].append(e.attention_mask)
            if return_special_tokens_mask:
                encoding_dict["special_tokens_mask"].append(e.special_tokens_mask)
            if return_offsets_mapping:
                encoding_dict["offset_mapping"].append(e.offsets)
            if return_length:
                encoding_dict["length"].append(len(e.ids))

        return encoding_dict, encodings

    def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
        """
        Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
        vocabulary.

        Args:
            tokens (`str` or `List[str]`): One or several token(s) to convert to token id(s).

        Returns:
            `int` or `List[int]`: The token id or list of token ids.
        """
        if tokens is None:
            return None

        if isinstance(tokens, str):
            return self._convert_token_to_id_with_added_voc(tokens)

        return [self._convert_token_to_id_with_added_voc(token) for token in tokens]

    def _convert_token_to_id_with_added_voc(self, token: str) -> int:
        index = self._tokenizer.token_to_id(token)
        if index is None:
            return self.unk_token_id
        return index

    def _convert_id_to_token(self, index: int) -> Optional[str]:
        return self._tokenizer.id_to_token(int(index))

    def _add_tokens(self, new_tokens: List[Union[str, AddedToken]], special_tokens=False) -> int:
        if special_tokens:
            return self._tokenizer.add_special_tokens(new_tokens)

        return self._tokenizer.add_tokens(new_tokens)

    def num_special_tokens_to_add(self, pair: bool = False) -> int:
        """
        Returns the number of added tokens when encoding a sequence with special tokens.

        <Tip>

        This encodes a dummy input and checks the number of added tokens, and is therefore not efficient. Do not put
        this inside your training loop.

        </Tip>

        Args:
            pair (`bool`, *optional*, defaults to `False`):
                Whether the number of added tokens should be computed in the case of a sequence pair or a single
                sequence.

        Returns:
            `int`: Number of special tokens added to sequences.
        """
        return self._tokenizer.num_special_tokens_to_add(pair)

    def convert_ids_to_tokens(
        self, ids: Union[int, List[int]], skip_special_tokens: bool = False
    ) -> Union[str, List[str]]:
        """
        Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
        added tokens.

        Args:
            ids (`int` or `List[int]`):
                The token id (or token ids) to convert to tokens.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens in the decoding.

        Returns:
            `str` or `List[str]`: The decoded token(s).
        """
        if isinstance(ids, int):
            return self._tokenizer.id_to_token(ids)
        tokens = []
        for index in ids:
            index = int(index)
            if skip_special_tokens and index in self.all_special_ids:
                continue
            tokens.append(self._tokenizer.id_to_token(index))
        return tokens

    def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
        return self.encode_plus(text=text, text_pair=pair, add_special_tokens=add_special_tokens, **kwargs).tokens()

    def set_truncation_and_padding(
        self,
        padding_strategy: PaddingStrategy,
        truncation_strategy: TruncationStrategy,
        max_length: int,
        stride: int,
        pad_to_multiple_of: Optional[int],
    ):
        """
        Define the truncation and the padding strategies for fast tokenizers (provided by HuggingFace tokenizers
        library) and restore the tokenizer settings afterwards.

        The provided tokenizer has no padding / truncation strategy before the managed section. If your tokenizer set a
        padding / truncation strategy before, then it will be reset to no padding / truncation when exiting the managed
        section.

        Args:
            padding_strategy ([`~utils.PaddingStrategy`]):
                The kind of padding that will be applied to the input
            truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`]):
                The kind of truncation that will be applied to the input
            max_length (`int`):
                The maximum size of a sequence.
            stride (`int`):
                The stride to use when handling overflow.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
                the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
        """
        _truncation = self._tokenizer.truncation
        _padding = self._tokenizer.padding
        # Set truncation and padding on the backend tokenizer
        if truncation_strategy == TruncationStrategy.DO_NOT_TRUNCATE:
            if _truncation is not None:
                self._tokenizer.no_truncation()
        else:
            target = {
                "max_length": max_length,
                "stride": stride,
                "strategy": truncation_strategy.value,
                "direction": self.truncation_side,
            }

            # _truncation might contain more keys that the target `transformers`
            # supports. Use only the target keys to trigger `enable_truncation`.
            # This should enable this code to works on various `tokenizers`
            # targets.
            if _truncation is None:
                current = None
            else:
                current = {k: _truncation.get(k, None) for k in target}

            if current != target:
                self._tokenizer.enable_truncation(**target)

        if padding_strategy == PaddingStrategy.DO_NOT_PAD:
            if _padding is not None:
                self._tokenizer.no_padding()
        else:
            length = max_length if padding_strategy == PaddingStrategy.MAX_LENGTH else None
            target = {
                "length": length,
                "direction": self.padding_side,
                "pad_id": self.pad_token_id,
                "pad_token": self.pad_token,
                "pad_type_id": self.pad_token_type_id,
                "pad_to_multiple_of": pad_to_multiple_of,
            }
            if _padding != target:
                self._tokenizer.enable_padding(**target)

    def _batch_encode_plus(
        self,
        batch_text_or_text_pairs: Union[
            List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair]
        ],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[str] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
    ) -> BatchEncoding:
        if not isinstance(batch_text_or_text_pairs, (tuple, list)):
            raise TypeError(
                f"batch_text_or_text_pairs has to be a list or a tuple (got {type(batch_text_or_text_pairs)})"
            )

        # Set the truncation and padding strategy and restore the initial configuration
        self.set_truncation_and_padding(
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
        )

        encodings = self._tokenizer.encode_batch(
            batch_text_or_text_pairs,
            add_special_tokens=add_special_tokens,
            is_pretokenized=is_split_into_words,
        )

        # Convert encoding to dict
        # `Tokens` has type: Tuple[
        #                       List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
        #                       List[EncodingFast]
        #                    ]
        # with nested dimensions corresponding to batch, overflows, sequence length
        tokens_and_encodings = [
            self._convert_encoding(
                encoding=encoding,
                return_token_type_ids=return_token_type_ids,
                return_attention_mask=return_attention_mask,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_offsets_mapping=return_offsets_mapping,
                return_length=return_length,
                verbose=verbose,
            )
            for encoding in encodings
        ]

        # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
        # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
        # (we say ~ because the number of overflow varies with the example in the batch)
        #
        # To match each overflowing sample with the original sample in the batch
        # we add an overflow_to_sample_mapping array (see below)
        sanitized_tokens = {}
        for key in tokens_and_encodings[0][0].keys():
            stack = [e for item, _ in tokens_and_encodings for e in item[key]]
            sanitized_tokens[key] = stack
        sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]

        # If returning overflowing tokens, we need to return a mapping
        # from the batch idx to the original sample
        if return_overflowing_tokens:
            overflow_to_sample_mapping = []
            for i, (toks, _) in enumerate(tokens_and_encodings):
                overflow_to_sample_mapping += [i] * len(toks["input_ids"])
            sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping

        for input_ids in sanitized_tokens["input_ids"]:
            self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
        return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)

    def _encode_plus(
        self,
        text: Union[TextInput, PreTokenizedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput]] = None,
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[bool] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        batched_input = [(text, text_pair)] if text_pair else [text]
        batched_output = self._batch_encode_plus(
            batched_input,
            is_split_into_words=is_split_into_words,
            add_special_tokens=add_special_tokens,
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            return_token_type_ids=return_token_type_ids,
            return_attention_mask=return_attention_mask,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_offsets_mapping=return_offsets_mapping,
            return_length=return_length,
            verbose=verbose,
            **kwargs,
        )

        # Return tensor is None, then we can remove the leading batch axis
        # Overflowing tokens are returned as a batch of output so we keep them in this case
        if return_tensors is None and not return_overflowing_tokens:
            batched_output = BatchEncoding(
                {
                    key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
                    for key, value in batched_output.items()
                },
                batched_output.encodings,
            )

        self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)

        return batched_output

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        return self.backend_tokenizer.decoder.decode(tokens)

    def _decode(
        self,
        token_ids: Union[int, List[int]],
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        **kwargs,
    ) -> str:
        self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)

        if isinstance(token_ids, int):
            token_ids = [token_ids]
        text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)

        clean_up_tokenization_spaces = (
            clean_up_tokenization_spaces
            if clean_up_tokenization_spaces is not None
            else self.clean_up_tokenization_spaces
        )
        if clean_up_tokenization_spaces:
            clean_text = self.clean_up_tokenization(text)
            return clean_text
        else:
            return text

    def _save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        file_names: Tuple[str],
        legacy_format: Optional[bool] = None,
        filename_prefix: Optional[str] = None,
    ) -> Tuple[str]:
        """
        Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens as well as in a unique JSON
        file containing {config + vocab + added-tokens}.
        """
        save_directory = str(save_directory)

        if self.slow_tokenizer_class is None and legacy_format is True:
            raise ValueError(
                "Your tokenizer does not have a legacy version defined and therefore cannot register this version. You"
                " might consider leaving the legacy_format at `None` or setting it to `False`."
            )

        save_slow = (
            (legacy_format is None or legacy_format is True)
            and self.slow_tokenizer_class is not None
            and self.can_save_slow_tokenizer
        )
        save_fast = legacy_format is None or legacy_format is False

        if save_slow:
            added_tokens_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE
            )
            added_vocab = self.get_added_vocab()
            if added_vocab:
                with open(added_tokens_file, "w", encoding="utf-8") as f:
                    out_str = json.dumps(added_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
                    f.write(out_str)

            vocab_files = self.save_vocabulary(save_directory, filename_prefix=filename_prefix)
            file_names = file_names + vocab_files + (added_tokens_file,)

        if save_fast:
            tokenizer_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_FILE
            )
            self.backend_tokenizer.save(tokenizer_file)
            file_names = file_names + (tokenizer_file,)

        return file_names

    def train_new_from_iterator(
        self,
        text_iterator,
        vocab_size,
        length=None,
        new_special_tokens=None,
        special_tokens_map=None,
        **kwargs,
    ):
        """
        Trains a tokenizer on a new corpus with the same defaults (in terms of special tokens or tokenization pipeline)
        as the current one.

        Args:
            text_iterator (generator of `List[str]`):
                The training corpus. Should be a generator of batches of texts, for instance a list of lists of texts
                if you have everything in memory.
            vocab_size (`int`):
                The size of the vocabulary you want for your tokenizer.
            length (`int`, *optional*):
                The total number of sequences in the iterator. This is used to provide meaningful progress tracking
            new_special_tokens (list of `str` or `AddedToken`, *optional*):
                A list of new special tokens to add to the tokenizer you are training.
            special_tokens_map (`Dict[str, str]`, *optional*):
                If you want to rename some of the special tokens this tokenizer uses, pass along a mapping old special
                token name to new special token name in this argument.
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the trainer from the 🤗 Tokenizers library.

        Returns:
            [`PreTrainedTokenizerFast`]: A new tokenizer of the same type as the original one, trained on
            `text_iterator`.

        """
        tokenizer_json = json.loads(self._tokenizer.to_str())
        # Remove added tokens for now (uses IDs of tokens)
        added_tokens = tokenizer_json.pop("added_tokens")
        # Remove post processor for now (uses IDs of tokens)
        post_processor = tokenizer_json.pop("post_processor")

        unk_token = None
        # Remove vocab
        if tokenizer_json["model"]["type"] == "BPE":
            tokenizer_json["model"]["vocab"] = {}
            tokenizer_json["model"]["merges"] = []
        elif tokenizer_json["model"]["type"] == "Unigram":
            if tokenizer_json["model"]["unk_id"] is not None:
                unk_id = tokenizer_json["model"]["unk_id"]
                unk_token = tokenizer_json["model"]["vocab"][unk_id][0]
                if special_tokens_map is not None and unk_token in special_tokens_map:
                    unk_token = special_tokens_map[unk_token]
                tokenizer_json["model"]["unk_id"] = 0
                tokenizer_json["model"]["vocab"] = [[unk_token, 0.0]]
        elif tokenizer_json["model"]["type"] in ["WordLevel", "WordPiece"]:
            tokenizer_json["model"]["vocab"] = {}
        else:
            raise ValueError(
                f"This method does not support this type of tokenizer (found {tokenizer_json['model']['type']}) "
                "only BPE, Unigram, WordLevel and WordPiece."
            )

        if (
            special_tokens_map is not None
            and "unk_token" in tokenizer_json["model"]
            and tokenizer_json["model"]["unk_token"] in special_tokens_map
        ):
            tokenizer_json["model"]["unk_token"] = special_tokens_map[tokenizer_json["model"]["unk_token"]]

        tokenizer = TokenizerFast.from_str(json.dumps(tokenizer_json))

        # Get the special tokens from the current tokenizer if none are specified.
        special_tokens = []
        for added_token in added_tokens:
            special = added_token.pop("special", None)
            _ = added_token.pop("id", None)
            if tokenizer_json["model"]["type"] != "Unigram" and not special:
                continue
            if special_tokens_map is not None and added_token["content"] in special_tokens_map:
                added_token["content"] = special_tokens_map[added_token["content"]]
            special_tokens.append(AddedToken(**added_token))

        if new_special_tokens is not None:
            special_tokens.extend(new_special_tokens)

        # Trainer needs to know the end of word / continuing subword thingies in BPE
        if (
            tokenizer_json["model"]["type"] == "BPE"
            and "continuing_subword_prefix" not in kwargs
            and tokenizer_json["model"]["continuing_subword_prefix"] is not None
        ):
            kwargs["continuing_subword_prefix"] = tokenizer_json["model"]["continuing_subword_prefix"]
        if (
            tokenizer_json["model"]["type"] == "BPE"
            and "end_of_word_suffix" not in kwargs
            and tokenizer_json["model"]["end_of_word_suffix"] is not None
        ):
            kwargs["end_of_word_suffix"] = tokenizer_json["model"]["end_of_word_suffix"]
        if tokenizer_json["model"]["type"] == "Unigram" and unk_token is not None:
            kwargs["unk_token"] = unk_token
        if tokenizer_json["pre_tokenizer"] is not None and tokenizer_json["pre_tokenizer"]["type"] == "ByteLevel":
            kwargs["initial_alphabet"] = pre_tokenizers_fast.ByteLevel.alphabet()

        trainer_class = MODEL_TO_TRAINER_MAPPING[tokenizer_json["model"]["type"]]
        trainer = trainer_class(vocab_size=vocab_size, special_tokens=special_tokens, **kwargs)
        tokenizer.train_from_iterator(text_iterator, length=length, trainer=trainer)

        if post_processor is not None:
            trained_tokenizer_json = json.loads(tokenizer.to_str())
            # Almost done, we just have to adjust the token IDs in the post processor
            if "special_tokens" in post_processor:
                for key in post_processor["special_tokens"]:
                    tokens = post_processor["special_tokens"][key]["tokens"]
                    if special_tokens_map is not None:
                        tokens = [special_tokens_map.get(token, token) for token in tokens]
                    post_processor["special_tokens"][key]["tokens"] = tokens
                    post_processor["special_tokens"][key]["ids"] = [tokenizer.token_to_id(token) for token in tokens]

            for special_token in ["cls", "sep"]:
                if special_token in post_processor:
                    token, _ = post_processor[special_token]
                    if special_tokens_map is not None and token in special_tokens_map:
                        token = special_tokens_map[token]
                    token_id = tokenizer.token_to_id(token)
                    post_processor[special_token] = [token, token_id]

            trained_tokenizer_json["post_processor"] = post_processor
            tokenizer = TokenizerFast.from_str(json.dumps(trained_tokenizer_json))

        kwargs = self.init_kwargs.copy()
        # Map pad/cls/mask token at the Transformers level
        special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy()
        special_tokens_list.remove("additional_special_tokens")
        for token in special_tokens_list:
            # Get the private one to avoid unnecessary warnings.
            if getattr(self, f"_{token}") is not None:
                special_token = getattr(self, token)
                if special_tokens_map is not None and special_token in special_tokens_map:
                    special_token = special_tokens_map[special_token]

                special_token_full = getattr(self, f"_{token}")
                if isinstance(special_token_full, AddedToken):
                    # Create an added token with the same parameters except the content
                    kwargs[token] = AddedToken(
                        special_token,
                        single_word=special_token_full.single_word,
                        lstrip=special_token_full.lstrip,
                        rstrip=special_token_full.rstrip,
                        normalized=special_token_full.normalized,
                    )
                else:
                    kwargs[token] = special_token

        additional_special_tokens = self.additional_special_tokens
        if new_special_tokens is not None:
            additional_special_tokens.extend(new_special_tokens)
        if len(additional_special_tokens) > 0:
            kwargs["additional_special_tokens"] = additional_special_tokens

        return self.__class__(tokenizer_object=tokenizer, **kwargs)