jihyokim commited on
Commit
aa6e33d
1 Parent(s): bac6657

feat: update as large model

Browse files
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 1024,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
README.md CHANGED
@@ -10,7 +10,7 @@ tags:
10
 
11
  # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
@@ -85,7 +85,7 @@ The model was trained with the parameters:
85
 
86
  **DataLoader**:
87
 
88
- `torch.utils.data.dataloader.DataLoader` of length 1160 with parameters:
89
  ```
90
  {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
  ```
@@ -98,7 +98,7 @@ Parameters of the fit()-Method:
98
  ```
99
  {
100
  "epochs": 5,
101
- "evaluation_steps": 116,
102
  "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
  "max_grad_norm": 1,
104
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
@@ -107,7 +107,7 @@ Parameters of the fit()-Method:
107
  },
108
  "scheduler": "WarmupLinear",
109
  "steps_per_epoch": null,
110
- "warmup_steps": 580,
111
  "weight_decay": 0.01
112
  }
113
  ```
@@ -117,7 +117,7 @@ Parameters of the fit()-Method:
117
  ```
118
  SentenceTransformer(
119
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
  )
122
  ```
123
 
 
10
 
11
  # {MODEL_NAME}
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
 
85
 
86
  **DataLoader**:
87
 
88
+ `torch.utils.data.dataloader.DataLoader` of length 657 with parameters:
89
  ```
90
  {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
  ```
 
98
  ```
99
  {
100
  "epochs": 5,
101
+ "evaluation_steps": 65,
102
  "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
  "max_grad_norm": 1,
104
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
 
107
  },
108
  "scheduler": "WarmupLinear",
109
  "steps_per_epoch": null,
110
+ "warmup_steps": 329,
111
  "weight_decay": 0.01
112
  }
113
  ```
 
117
  ```
118
  SentenceTransformer(
119
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel
120
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
  )
122
  ```
123
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "../model_output/klue-roberta-base-nli1-bs16-msl512/",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
@@ -10,14 +10,14 @@
10
  "gradient_checkpointing": false,
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
13
- "hidden_size": 768,
14
  "initializer_range": 0.02,
15
- "intermediate_size": 3072,
16
  "layer_norm_eps": 1e-05,
17
  "max_position_embeddings": 514,
18
  "model_type": "roberta",
19
- "num_attention_heads": 12,
20
- "num_hidden_layers": 12,
21
  "pad_token_id": 1,
22
  "position_embedding_type": "absolute",
23
  "tokenizer_class": "BertTokenizer",
 
1
  {
2
+ "_name_or_path": "data/klue-roberta-large-nli1-bs16-msl512/",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
10
  "gradient_checkpointing": false,
11
  "hidden_act": "gelu",
12
  "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
  "initializer_range": 0.02,
15
+ "intermediate_size": 4096,
16
  "layer_norm_eps": 1e-05,
17
  "max_position_embeddings": 514,
18
  "model_type": "roberta",
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 24,
21
  "pad_token_id": 1,
22
  "position_embedding_type": "absolute",
23
  "tokenizer_class": "BertTokenizer",
eval/similarity_evaluation_valid_results.csv CHANGED
@@ -1,56 +1,56 @@
1
  epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
- 0,116,0.9417626309131897,0.8993977973783095,0.9281930848247232,0.8941586213650483,0.9279571699502311,0.8938316402596118,0.9297917798572208,0.8837339457578025
3
- 0,232,0.948269836064555,0.8963788955291331,0.9348478989632005,0.8934761897168892,0.9345430625073853,0.8930328946349785,0.9393674882970445,0.8837405938328501
4
- 0,348,0.9580698270695754,0.9110359944622393,0.9432255740748026,0.9048487054889,0.9429727358507897,0.904435283143361,0.94526013084424,0.8945725241206802
5
- 0,464,0.9604166729467929,0.9122904555586901,0.9478600555399268,0.9096126326737067,0.9475766445606547,0.9091921024797567,0.9516155847436942,0.9002417583546655
6
- 0,580,0.9635361079200988,0.9156018895169075,0.9507706355726315,0.9118772712396659,0.9505655357741409,0.9114442570846961,0.9538566706199453,0.9019783872488993
7
- 0,696,0.9644821065022252,0.9147384457782508,0.9546189044443963,0.9154943244045619,0.9543592891421172,0.9149892045693169,0.9588105767366106,0.9043612835756827
8
- 0,812,0.9683399245276633,0.9220735036116932,0.9568650809593846,0.9195933631064951,0.9566794245610599,0.9193125266448459,0.9623635372281096,0.9120498162825075
9
- 0,928,0.9722018322121226,0.9299576225401618,0.9633835996635178,0.9277061550756472,0.963253643623651,0.9274126986777438,0.9652880824255546,0.9176394801964883
10
- 0,1044,0.9728543240758174,0.9294568909924819,0.9623965549058886,0.926590289365552,0.9621645993702972,0.926067861434418,0.9658723778882209,0.9170305573033567
11
- 0,1160,0.9755807108204926,0.9340367993796976,0.9673794994346474,0.9322010118366277,0.9671843436238083,0.9317023889775633,0.9688656939979654,0.9200533181473699
12
- 0,-1,0.9755807108204926,0.9340367993796976,0.9673794994346474,0.9322010118366277,0.9671843436238083,0.9317023889775633,0.9688656939979654,0.9200533181473699
13
- 1,116,0.9779813042155716,0.9391723398642254,0.9680376825250121,0.9348755561180547,0.9678269254058625,0.9344597538000446,0.9690998695567161,0.9232632972710824
14
- 1,232,0.9782802406716271,0.9376895322238586,0.967983494030841,0.9345646268373838,0.9677974740121584,0.9341007680850221,0.9693167687771578,0.921363719510076
15
- 1,348,0.9793423960401122,0.9413511673117703,0.9704947293586538,0.9393763435134198,0.9702981057672719,0.938846580522464,0.9718702998861452,0.9270079183737258
16
- 1,464,0.9806137880352291,0.9443904514263659,0.9719237817330562,0.9415542117693178,0.9717696193249546,0.9411616403683044,0.9738075049303977,0.93053298542019
17
- 1,580,0.9808639124087384,0.9443073221320709,0.9722148393300204,0.9415771182125207,0.9719851962116427,0.9409740337867225,0.9744261405831938,0.9302260038204958
18
- 1,696,0.9814800993037737,0.9448282428094684,0.9714813403320623,0.941261176282898,0.9712873168159789,0.9405487083702895,0.975670929045395,0.9330653904174789
19
- 1,812,0.9835392192009856,0.9509198108955195,0.9742517513824278,0.9464346903728069,0.9741136454365442,0.9460228120055081,0.97685480622333,0.9370932323767103
20
- 1,928,0.9841297607334931,0.9513250288548017,0.9757459579278374,0.9478591636601229,0.9755472126078991,0.9473041093831956,0.9762563863254671,0.935053689879487
21
- 1,1044,0.9842300931849058,0.950295030992999,0.9760720993924173,0.9474419774053435,0.9758868293818653,0.9469532534311855,0.9761665683271714,0.9337854765502913
22
- 1,1160,0.9855832054969492,0.953818319412321,0.9770422467870863,0.9488683242699321,0.9768868320878762,0.9485084806113876,0.9781102180404343,0.9374495179985511
23
- 1,-1,0.9855832054969492,0.953818319412321,0.9770422467870863,0.9488683242699321,0.9768868320878762,0.9485084806113876,0.9781102180404343,0.9374495179985511
24
- 2,116,0.9862297861077189,0.9559643977087082,0.9776286098409599,0.950820709946674,0.9774384032914671,0.9503159098655451,0.9784219160499303,0.939352640902304
25
- 2,232,0.9865282656306348,0.9566891013795449,0.9781667136329784,0.9519203419119072,0.977984290616836,0.9514886658952362,0.9787761218327936,0.9405483963476409
26
- 2,348,0.9867904778816761,0.9574248485302137,0.9783451080764652,0.9529197754675058,0.9781754347748604,0.9525282571525399,0.9803437402704741,0.9435052578128054
27
- 2,464,0.9865649094182577,0.9561053704202349,0.9768801055177768,0.9512772737858256,0.976704052057932,0.9507275567242626,0.9797161579880518,0.9423351424127993
28
- 2,580,0.987445859393487,0.9599976675123767,0.9768231257264473,0.9537510892013855,0.9766598918376544,0.9533237767450885,0.9788076456654577,0.9447629775123207
29
- 2,696,0.9877988266802159,0.9601082498198381,0.9789128557348105,0.9555745037929001,0.9787688889835032,0.9551394035721662,0.9806929431972481,0.9452884918834478
30
- 2,812,0.9881793582954859,0.9618904728839216,0.9787955817200887,0.9561564881945427,0.9786766800174315,0.9557979612634164,0.9811379621969059,0.9473115042711029
31
- 2,928,0.9883785476890803,0.9609126388249836,0.9788562598935232,0.9562624104359837,0.9786870615155937,0.9556621457567834,0.9812713584551744,0.946547201761236
32
- 2,1044,0.9886633015552146,0.9630321854319105,0.9793449765837995,0.9574462468759106,0.9791516689164798,0.9568827091628299,0.9818741363567463,0.9484288982666521
33
- 2,1160,0.9893362284258171,0.9653125018371258,0.9797244959674489,0.9582418361521872,0.9795228136899271,0.9577333570039964,0.9806780508058212,0.9474158768557777
34
- 2,-1,0.9893362284258171,0.9653125018371258,0.9797244959674489,0.9582418361521872,0.9795228136899271,0.9577333570039964,0.9806780508058212,0.9474158768557777
35
- 3,116,0.9890752240033873,0.9635146067477229,0.9787883866039019,0.9561799961287363,0.9786069246083137,0.9556745933621202,0.9798463888302463,0.9451922694955671
36
- 3,232,0.9899871030176554,0.9670910469299312,0.9808901444747131,0.9604137126802372,0.9806801404933494,0.959833532812709,0.9812225377834675,0.9490177108866373
37
- 3,348,0.9900521856716298,0.9660269522000807,0.979761341829905,0.9590729948971584,0.9795642899379177,0.9585097671046632,0.9812845860433819,0.9490635522006776
38
- 3,464,0.9903133123888069,0.9676943189293561,0.9798216044312509,0.9594752262849279,0.9796437027378901,0.9589837539766174,0.9815443665979413,0.950661540587927
39
- 3,580,0.990609092690032,0.9678201092842497,0.9796284810356656,0.9593486653170241,0.9794360501134426,0.9587706491004114,0.9807219892293189,0.9497036032193262
40
- 3,696,0.990567252373826,0.9678240733456567,0.979259651073164,0.958187296901744,0.979048209068006,0.957617264037262,0.9801578353933957,0.9488686336095377
41
- 3,812,0.9907228445902738,0.9677750314834225,0.9799026889534468,0.9597044368514158,0.9796785192532965,0.9590495399818838,0.981506363587331,0.9505410491983717
42
- 3,928,0.9911621017105852,0.969700216515436,0.9811733619786855,0.9617198793567407,0.9809808801761094,0.961142429921733,0.9830119618956904,0.9529693977206017
43
- 3,1044,0.9911832753035583,0.9694007373707682,0.9805991184265489,0.9607415735451614,0.9804203811278746,0.9601957309136643,0.9824771027995955,0.9517930844211263
44
- 3,1160,0.9916286557557291,0.9704539770424336,0.9804660730868103,0.9614191571507386,0.9802683035941746,0.9608379106717627,0.9823986558508487,0.9527461184732192
45
- 3,-1,0.9916286557557291,0.9704539770424336,0.9804660730868103,0.9614191571507386,0.9802683035941746,0.9608379106717627,0.9823986558508487,0.9527461184732192
46
- 4,116,0.9918693428519026,0.9713661705708381,0.98087996184206,0.9619163434442097,0.980688801580351,0.9613802947243588,0.9827809914813201,0.9537746470814503
47
- 4,232,0.9918017327316409,0.9709428690341261,0.9805087818335962,0.9613762388224368,0.9803277659926874,0.9608445983062485,0.98231086649374,0.9532052435754654
48
- 4,348,0.9921669469850591,0.9724525309521326,0.9810380277303785,0.9625661089780155,0.9808537645854061,0.9620465180717763,0.9820591320509758,0.9533891157454425
49
- 4,464,0.9923003690549893,0.9726795924424372,0.9812317553446949,0.9628656343736186,0.9810547401321132,0.9623678741451539,0.9826620530130972,0.9543873282293893
50
- 4,580,0.9924556311989275,0.9731265493362411,0.9816319581718264,0.9631606757706797,0.9814444528370282,0.9626711618024385,0.982770304434995,0.9541982667914721
51
- 4,696,0.9925521981010929,0.9734095770795356,0.9813316875533769,0.9630813038632029,0.9811341856122204,0.962585887120333,0.9825046741552902,0.954442581906078
52
- 4,812,0.9926249925720471,0.9735635753451156,0.9810310504298372,0.9628726488953683,0.9808371389496079,0.9623526378617988,0.9822648802150961,0.9544501532220129
53
- 4,928,0.992797447412385,0.9740338213237436,0.9813303277868278,0.9633991901286582,0.9811385306099375,0.9628821018804328,0.9828195187734894,0.9552494042577336
54
- 4,1044,0.9927997125396482,0.9740182756375088,0.980997644733269,0.9630346332454359,0.9808053692053481,0.9624966448837505,0.982661115951555,0.9553206921440683
55
- 4,1160,0.9928567704655278,0.9742482656881033,0.9811528228668275,0.9632026239417784,0.98096060185284,0.9626778625396868,0.9827371651995978,0.9554394275070727
56
- 4,-1,0.9928567704655278,0.9742482656881033,0.9811528228668275,0.9632026239417784,0.98096060185284,0.9626778625396868,0.9827371651995978,0.9554394275070727
 
1
  epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,65,0.9450962885766199,0.9037485312968464,0.9300528284029176,0.8961820342448713,0.930168949196146,0.896110016861719,0.933104700089962,0.8879552570118354
3
+ 0,130,0.9526485401319882,0.9062624461649387,0.9348572633179625,0.8976952155060833,0.9347841568754535,0.8973433877113094,0.9427269587858736,0.8931837048675654
4
+ 0,195,0.9595303579974707,0.9142733521375342,0.9442939418418763,0.9078559841512914,0.9441828535745902,0.9074786717054953,0.9478106148875446,0.8986859957448045
5
+ 0,260,0.9617001459144195,0.9188656765282182,0.9497835035141037,0.9136206882736468,0.9497293369045067,0.9132892165241399,0.9508986039244776,0.9011062635391401
6
+ 0,325,0.9628843334863715,0.9195580934253044,0.9500758792170405,0.9151045140421136,0.949929744304782,0.9147803738509395,0.9569920092930422,0.907382567446735
7
+ 0,390,0.9639579818543964,0.9223004332520758,0.9547931997051272,0.9190447827776115,0.9546934717175326,0.9187055407061121,0.9594420682106848,0.9112284935694275
8
+ 0,455,0.9662851052923659,0.9234145621939238,0.9562164179474448,0.9204125035516133,0.9561325870578272,0.9201735977449076,0.9592004342631336,0.9091295996563256
9
+ 0,520,0.9694668380056263,0.9309343328286745,0.9570074669966071,0.925301327121036,0.9569165617673985,0.9250269387014896,0.9582035592261776,0.9124855539569819
10
+ 0,585,0.9723612652107801,0.9324385623020064,0.9600483906788069,0.9276242140710466,0.9600082335271236,0.9273525809703603,0.9634036126741529,0.9166930002769497
11
+ 0,650,0.9744469915615347,0.9353950953638092,0.9628905748830648,0.9301869586433137,0.9627792555434287,0.9298928854822393,0.9635921674947908,0.9157777609860347
12
+ 0,-1,0.9744524509263498,0.9355745161025236,0.9630585226647224,0.9304102648275934,0.9629404281301782,0.9300652088036956,0.9647233290303684,0.917322511532086
13
+ 1,65,0.9760382480370817,0.9370389924076827,0.9659784341543698,0.9339729211138691,0.9659088531046812,0.9336654226335102,0.9671644650379402,0.9193094198718994
14
+ 1,130,0.9768567008880943,0.9383797185233935,0.966976866585407,0.9350778362724242,0.9669284723078647,0.9349076368023743,0.9683039280036203,0.9209162665876254
15
+ 1,195,0.9778746440494153,0.9409410098053567,0.9683395404189199,0.9387545930602372,0.9683065192454419,0.9386532386868401,0.9688243931890176,0.9235225014434626
16
+ 1,260,0.9795497244284369,0.9449748441785889,0.9698341704645701,0.9410306774423478,0.9697687450014839,0.9408439718266611,0.9702414461023302,0.9257443725758133
17
+ 1,325,0.9798225721923421,0.947249561028625,0.9682651531514844,0.9409950130566243,0.9682122729790582,0.9408348449079516,0.9685372609627604,0.9273494992106206
18
+ 1,390,0.9803734736419105,0.9481844196889749,0.971003886781885,0.9432195157262822,0.9709454052933055,0.942975312728328,0.9718693716702692,0.9295814148732897
19
+ 1,455,0.9815065852342996,0.9489358917276964,0.9726105667397389,0.944342114777752,0.9725523836956391,0.9440875389655905,0.9717673072973531,0.9275553295106307
20
+ 1,520,0.9824674746258831,0.950574690083999,0.9732375048994956,0.9454818584640391,0.9731859620813956,0.9452850977967319,0.9736496764064112,0.9309509005669244
21
+ 1,585,0.9834244099703123,0.9533429772388795,0.9735770845392127,0.9481193454290129,0.9735277109299411,0.9478712714901714,0.9742870584082444,0.9331610785707243
22
+ 1,650,0.9844838828609993,0.9569825284960917,0.9753458221354517,0.9517483778762286,0.9752657262291878,0.9514221836233381,0.9764416951453416,0.9385130733527801
23
+ 1,-1,0.9847396924311966,0.9573263321941934,0.9755750797328923,0.9521299235341704,0.9755060804202205,0.9517926830564324,0.9767299780374573,0.9392059022779248
24
+ 2,65,0.9849280550428714,0.9564386346887174,0.975355278091752,0.9518105539947014,0.975273110867893,0.9514462527083342,0.9761829280721366,0.9374334883451071
25
+ 2,130,0.9856071157384126,0.9597032713473029,0.9751640796679493,0.9529847039974815,0.9750701628991254,0.9526615731033029,0.9755695268811876,0.9390378797393223
26
+ 2,195,0.9859334513411054,0.9605144457246071,0.9759017943922763,0.9548045124621254,0.9758099432015181,0.954389330316847,0.9771623084737303,0.9417788847508552
27
+ 2,260,0.9862758435673878,0.9611431344587528,0.9762307964622666,0.9560592418460738,0.9761557714559368,0.9557421850879082,0.9766933081487434,0.9412265727418067
28
+ 2,325,0.9868534453389665,0.9626816722592928,0.9777151758527289,0.9580903465752495,0.9776304245311046,0.957749154892145,0.978140305171663,0.9435958064140455
29
+ 2,390,0.9869902318860228,0.9623139746784058,0.9765050263219914,0.9569004021910574,0.9764176476661701,0.956613016647335,0.9774514690603672,0.9428688563376247
30
+ 2,455,0.9875622597019832,0.9646683713862236,0.9764541224999095,0.9578370641968195,0.9763978432964757,0.9575549338083919,0.9785823442285312,0.9459736774907043
31
+ 2,520,0.9878622009005984,0.9654818255623808,0.9766720669973291,0.9579808535828294,0.9765788407528522,0.9576038087013262,0.9778498306464314,0.9451623766005413
32
+ 2,585,0.9881254815995715,0.9661134656570236,0.9760380605821765,0.9579104664382305,0.9759601781446547,0.9576136431845318,0.9783430528545717,0.9467766862217248
33
+ 2,650,0.9886687528782107,0.9669586479759691,0.9769656870044339,0.9595981068654681,0.9768811949697955,0.9592689895091854,0.9798147834272309,0.9486770933526824
34
+ 2,-1,0.9884827920605181,0.9662499919106681,0.9765310081820143,0.9591638819397147,0.9764470520894734,0.9588334152165847,0.9798888388856032,0.9484838323008439
35
+ 3,65,0.9891468349701465,0.9680061058709235,0.9780550002341166,0.9612016071048037,0.9779603797040222,0.9607824470643986,0.9801733116896864,0.9490462250289583
36
+ 3,130,0.9896395834058724,0.9687165648456506,0.9784713356979137,0.9615203187022282,0.9783683017773172,0.9611338072637498,0.9802643917898448,0.9491347957130004
37
+ 3,195,0.9897943528902955,0.9704400258640831,0.977684348319498,0.961913896188716,0.9775909726989168,0.9615426048714073,0.9792587420039076,0.9499707021943303
38
+ 3,260,0.9900803714929103,0.9709038571238544,0.9783607650547733,0.9620548257187613,0.978254529996118,0.9616923013274344,0.9801511799902952,0.9510189267532941
39
+ 3,325,0.9902257454808906,0.9701505636668742,0.9787095535380529,0.9626983327671962,0.9786018335836466,0.9623218673256017,0.9810608236727453,0.9514222030256614
40
+ 3,390,0.9903217377212674,0.9703480447649762,0.9783905028282679,0.9623447102360272,0.9782825293533796,0.9619087690576225,0.9802648493385162,0.9503120805052606
41
+ 3,455,0.9909482066923018,0.9724131088754565,0.9789971373937102,0.9637042934503356,0.9789004077421916,0.9632790954634505,0.9810104730908307,0.9523355014930789
42
+ 3,520,0.9912414015262909,0.9733805352917818,0.979178746031331,0.9644451628779105,0.9790602590272242,0.9640127472405658,0.9813014392180701,0.9536155427498092
43
+ 3,585,0.9913366846799521,0.9735695665751978,0.9793307301387646,0.9646584746716608,0.9792220380326317,0.9642132063622015,0.9815417308818629,0.9541096803248864
44
+ 3,650,0.9914706908746421,0.9737326611560257,0.9791627724732839,0.9646147822116262,0.9790615569247757,0.9641776269370242,0.9814915525192658,0.9541220076242296
45
+ 3,-1,0.9914733788590939,0.9738092628072146,0.9791244723756433,0.9646293060736866,0.9790228285435293,0.9641859627968589,0.9815264393377655,0.9542978513061603
46
+ 4,65,0.9916588471098222,0.974415181844439,0.979153847946894,0.9646976740349861,0.9790519724212301,0.9642751132333449,0.9819891938092719,0.9552999150826269
47
+ 4,130,0.9917996515382658,0.974651140032634,0.9792893424778295,0.9648144645370323,0.9791774185573862,0.9643468329454702,0.9820253411134156,0.9552227857882973
48
+ 4,195,0.9920554135053716,0.9752445257156087,0.9793309829778141,0.9652100065627497,0.9792220929725468,0.9647258537753207,0.9823864256448313,0.9562413029594432
49
+ 4,260,0.9922657266011131,0.9761242934389289,0.9794334206785208,0.9655279616341972,0.9793211175347241,0.9650452166091836,0.9822848287988739,0.9564869412099499
50
+ 4,325,0.9924025874561615,0.9765859794441941,0.9795358668079737,0.9657344209526362,0.9794208049989456,0.9652410097926988,0.9822421810797303,0.9565666751032983
51
+ 4,390,0.9924248342054038,0.9765355938472762,0.9793553360408334,0.9657949666764678,0.9792455728290694,0.9652942962433387,0.9826434029143594,0.957296959186484
52
+ 4,455,0.9925654346756603,0.9769371667211181,0.9796608241691501,0.9663312165501814,0.9795530520865743,0.9658446248131752,0.983011574149525,0.9579941854963273
53
+ 4,520,0.9925661999747731,0.9768303498144754,0.9796286752981723,0.9662626671930274,0.9795220803093988,0.9657850962295496,0.9830883486843035,0.9580017313731142
54
+ 4,585,0.9926228347498095,0.9769527790770869,0.9797660980161369,0.9663102418931035,0.9796594311389403,0.9658401494432395,0.9830880548631337,0.9579560631976755
55
+ 4,650,0.992678343704566,0.9771605378302233,0.9798170442514417,0.9664383685259873,0.9797116474885933,0.9659760169510083,0.9830724557942112,0.9580649340081575
56
+ 4,-1,0.9926791071392681,0.977163214893553,0.9798184006952244,0.9664402041301481,0.9797130071640839,0.9659775184666868,0.9830726261956798,0.9580662121233869
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f7177cc460e0c1d1cc1ecab5ba3d9944ea3afa1f7f9e7d3a378800b2916e98ca
3
- size 442539177
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a8bad88a4baa6dcbea5e20b8f66b8c0069fd71d7793cadd6b94c0e1e31cc4be
3
+ size 1346757353
similarity_evaluation_test_results.csv CHANGED
@@ -1,2 +1,2 @@
1
  epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
- -1,-1,0.9001174336076292,0.898769612027239,0.8972883240366022,0.8931198580215111,0.8959932663887161,0.8915043179659566,0.8847692667328326,0.8833462570838377
 
1
  epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.9040766817071945,0.9021119177397706,0.8982409026032018,0.8979277574268917,0.8994350526345978,0.8988094489080267,0.8912904104683059,0.8895395612884133