File size: 72,519 Bytes
f5b866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a41061d
f5b866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d024b3
f5b866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32fb640
 
 
 
 
f5b866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d024b3
f5b866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d024b3
 
f5b866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8aad15
 
 
 
 
 
 
 
 
f5b866b
 
 
 
 
 
 
7d024b3
 
 
 
 
 
 
 
aa06741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d024b3
 
 
 
 
aa06741
 
 
7d024b3
 
aa06741
 
7d024b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b866b
7d024b3
f5b866b
7d024b3
aa06741
f5b866b
7d024b3
f5b866b
aa06741
f5b866b
 
aa06741
 
 
 
f5b866b
 
 
 
 
7d024b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b866b
7d024b3
f5b866b
7d024b3
f5b866b
 
 
 
7d024b3
f5b866b
7d024b3
f5b866b
7d024b3
 
f5b866b
7d024b3
 
f5b866b
 
7d024b3
f5b866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
# Copyright 2024 Stability AI, The HuggingFace Team, The InstantX Team, and Terminus Research Group. All rights reserved.
#
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Originally licensed under the Apache License, Version 2.0 (the "License");
# Updated to "Affero GENERAL PUBLIC LICENSE Version 3, 19 November 2007" via extensive updates to attn_mask usage.
__all__ = ['FluxTransformer2DModelWithMasking', 'CustomPipeline']

from typing import Any, Dict, List, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import (
    Attention,
    apply_rope,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (
    AdaLayerNormContinuous,
    AdaLayerNormZero,
    AdaLayerNormZeroSingle,
)
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_version,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import (
    CombinedTimestepGuidanceTextProjEmbeddings,
    CombinedTimestepTextProjEmbeddings,
)
from diffusers.models.modeling_outputs import Transformer2DModelOutput

from dataclasses import dataclass
from typing import List, Union
import PIL.Image
from diffusers.utils import BaseOutput

import inspect
from functools import lru_cache
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from transformers import (
    CLIPTextModel,
    CLIPTokenizer,
    T5EncoderModel,
    T5TokenizerFast,
)

from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import SD3LoraLoaderMixin
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


@dataclass
class FluxPipelineOutput(BaseOutput):
    """
    Output class for Stable Diffusion pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class FluxSingleAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, _, _ = hidden_states.shape
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            # YiYi to-do: update uising apply_rotary_emb
            # from ..embeddings import apply_rotary_emb
            # query = apply_rotary_emb(query, image_rotary_emb)
            # key = apply_rotary_emb(key, image_rotary_emb)
            query, key = apply_rope(query, key, image_rotary_emb)

        if attention_mask is not None:
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = (attention_mask > 0).bool()
            attention_mask = attention_mask.to(
                device=hidden_states.device, dtype=hidden_states.dtype
            )

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query,
            key,
            value,
            dropout_p=0.0,
            is_causal=False,
            attn_mask=attention_mask,
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        return hidden_states


class FluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size = encoder_hidden_states.shape[0]

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # `context` projections.
        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)
        encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)
        encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
            batch_size, -1, attn.heads, head_dim
        ).transpose(1, 2)

        if attn.norm_added_q is not None:
            encoder_hidden_states_query_proj = attn.norm_added_q(
                encoder_hidden_states_query_proj
            )
        if attn.norm_added_k is not None:
            encoder_hidden_states_key_proj = attn.norm_added_k(
                encoder_hidden_states_key_proj
            )

        # attention
        query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
        key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
        value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            # YiYi to-do: update uising apply_rotary_emb
            # from ..embeddings import apply_rotary_emb
            # query = apply_rotary_emb(query, image_rotary_emb)
            # key = apply_rotary_emb(key, image_rotary_emb)
            query, key = apply_rope(query, key, image_rotary_emb)

        if attention_mask is not None:
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = (attention_mask > 0).bool()
            attention_mask = attention_mask.to(
                device=hidden_states.device, dtype=hidden_states.dtype
            )

        hidden_states = F.scaled_dot_product_attention(
            query,
            key,
            value,
            dropout_p=0.0,
            is_causal=False,
            attn_mask=attention_mask,
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        encoder_hidden_states, hidden_states = (
            hidden_states[:, : encoder_hidden_states.shape[1]],
            hidden_states[:, encoder_hidden_states.shape[1] :],
        )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )
        if context_input_ndim == 4:
            encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        return hidden_states, encoder_hidden_states


# YiYi to-do: refactor rope related functions/classes
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
    assert dim % 2 == 0, "The dimension must be even."

    scale = (
        torch.arange(
            0,
            dim,
            2,
            dtype=torch.float64, # torch.float32 if torch.backends.mps.is_available() else
            device=pos.device,
        )
        / dim
    )
    omega = 1.0 / (theta**scale)

    batch_size, seq_length = pos.shape
    out = torch.einsum("...n,d->...nd", pos, omega)
    cos_out = torch.cos(out)
    sin_out = torch.sin(out)

    stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
    out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
    return out.float()


# YiYi to-do: refactor rope related functions/classes
class EmbedND(nn.Module):
    def __init__(self, dim: int, theta: int, axes_dim: List[int]):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: torch.Tensor) -> torch.Tensor:
        n_axes = ids.shape[-1]
        emb = torch.cat(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            dim=-3,
        )

        return emb.unsqueeze(1)


def expand_flux_attention_mask(
    hidden_states: torch.Tensor,
    attn_mask: torch.Tensor,
) -> torch.Tensor:
    """
    Expand a mask so that the image is included.
    """
    bsz = attn_mask.shape[0]
    assert bsz == hidden_states.shape[0]
    residual_seq_len = hidden_states.shape[1]
    mask_seq_len = attn_mask.shape[1]

    expanded_mask = torch.ones(bsz, residual_seq_len)
    expanded_mask[:, :mask_seq_len] = attn_mask

    return expanded_mask


@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

    Reference: https://arxiv.org/abs/2403.03206

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

    def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
        super().__init__()
        self.mlp_hidden_dim = int(dim * mlp_ratio)

        self.norm = AdaLayerNormZeroSingle(dim)
        self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
        self.act_mlp = nn.GELU(approximate="tanh")
        self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)

        processor = FluxSingleAttnProcessor2_0()
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=True,
            processor=processor,
            qk_norm="rms_norm",
            eps=1e-6,
            pre_only=True,
        )

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        image_rotary_emb=None,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        residual = hidden_states
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))

        if attention_mask is not None:
            attention_mask = expand_flux_attention_mask(
                hidden_states,
                attention_mask,
            )

        attn_output = self.attn(
            hidden_states=norm_hidden_states,
            image_rotary_emb=image_rotary_emb,
            attention_mask=attention_mask,
        )

        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        gate = gate.unsqueeze(1)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states


@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
    r"""
    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.

    Reference: https://arxiv.org/abs/2403.03206

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
            processing of `context` conditions.
    """

    def __init__(
        self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
    ):
        super().__init__()

        self.norm1 = AdaLayerNormZero(dim)

        self.norm1_context = AdaLayerNormZero(dim)

        if hasattr(F, "scaled_dot_product_attention"):
            processor = FluxAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=False,
            bias=True,
            processor=processor,
            qk_norm=qk_norm,
            eps=eps,
        )

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_context = FeedForward(
            dim=dim, dim_out=dim, activation_fn="gelu-approximate"
        )

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        image_rotary_emb=None,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
            hidden_states, emb=temb
        )

        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
            self.norm1_context(encoder_hidden_states, emb=temb)
        )

        if attention_mask is not None:
            attention_mask = expand_flux_attention_mask(
                torch.cat([encoder_hidden_states, hidden_states], dim=1),
                attention_mask,
            )

        # Attention.
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
            attention_mask=attention_mask,
        )

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = (
            norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        )

        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output

        # Process attention outputs for the `encoder_hidden_states`.

        context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
        encoder_hidden_states = encoder_hidden_states + context_attn_output

        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
        norm_encoder_hidden_states = (
            norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
            + c_shift_mlp[:, None]
        )

        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        encoder_hidden_states = (
            encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
        )

        return encoder_hidden_states, hidden_states


class FluxTransformer2DModelWithMasking(
    ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
):
    """
    The Transformer model introduced in Flux.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Parameters:
        patch_size (`int`): Patch size to turn the input data into small patches.
        in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
        num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
        num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
        joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
        guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: List[int] = [16, 56, 56],
    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = (
            self.config.num_attention_heads * self.config.attention_head_dim
        )

        self.pos_embed = EmbedND(
            dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
        )
        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings
            if guidance_embeds
            else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim,
            pooled_projection_dim=self.config.pooled_projection_dim,
        )

        self.context_embedder = nn.Linear(
            self.config.joint_attention_dim, self.inner_dim
        )
        self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_single_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(
            self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
        )
        self.proj_out = nn.Linear(
            self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
        )

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModelWithMasking`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `torch.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if (
                joint_attention_kwargs is not None
                and joint_attention_kwargs.get("scale", None) is not None
            ):
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        ids = torch.cat((txt_ids, img_ids), dim=1)
        image_rotary_emb = self.pos_embed(ids)

        for index_block, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                encoder_hidden_states, hidden_states = (
                    torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        encoder_hidden_states,
                        temb,
                        image_rotary_emb,
                        attention_mask,
                        **ckpt_kwargs,
                    )
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    attention_mask=attention_mask,
                )

        # Flux places the text tokens in front of the image tokens in the
        # sequence.
        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    attention_mask,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    attention_mask=attention_mask,
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import FluxPipeline

        >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
        >>> pipe.to("cuda")
        >>> prompt = "A cat holding a sign that says hello world"
        >>> # Depending on the variant being used, the pipeline call will slightly vary.
        >>> # Refer to the pipeline documentation for more details.
        >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
        >>> image.save("flux.png")
        ```
"""


def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class CustomPipeline(DiffusionPipeline, SD3LoraLoaderMixin):
    r"""
    The Flux pipeline for text-to-image generation.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Args:
        transformer ([`FluxTransformer2DModelWithMasking`]):
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModelWithProjection`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
            with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
            as its dimension.
        text_encoder_2 ([`CLIPTextModelWithProjection`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`CLIPTokenizer`):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents", "prompt_embeds"]

    def __init__(
        self,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        text_encoder_2: T5EncoderModel,
        tokenizer_2: T5TokenizerFast,
        transformer: FluxTransformer2DModelWithMasking,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels))
            if hasattr(self, "vae") and self.vae is not None
            else 16
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length
            if hasattr(self, "tokenizer") and self.tokenizer is not None
            else 77
        )
        self.default_sample_size = 64

    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_images_per_prompt: int = 1,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_length=False,
            return_overflowing_tokens=False,
            return_tensors="pt",
        )
        prompt_attention_mask = text_inputs.attention_mask
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer_2(
            prompt, padding="longest", return_tensors="pt"
        ).input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]

        dtype = self.text_encoder_2.dtype
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        _, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds, prompt_attention_mask

    def _get_clip_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
    ):
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer_max_length,
            truncation=True,
            return_overflowing_tokens=False,
            return_length=False,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(
            prompt, padding="longest", return_tensors="pt"
        ).input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(
                untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer_max_length} tokens: {removed_text}"
            )
        prompt_embeds = self.text_encoder(
            text_input_ids.to(device), output_hidden_states=False
        )

        # Use pooled output of CLIPTextModel
        prompt_embeds = prompt_embeds.pooler_output
        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)

        return prompt_embeds

    @lru_cache(maxsize=128)
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        prompt_2: Union[str, List[str]],
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        max_sequence_length: int = 512,
        lora_scale: Optional[float] = None,
    ):
        r"""

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in all text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)
            if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        prompt_attention_mask = None
        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # We only use the pooled prompt output from the CLIPTextModel
            pooled_prompt_embeds = self._get_clip_prompt_embeds(
                prompt=prompt,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
            )
            prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
                prompt=prompt_2,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
            )

        if self.text_encoder is not None:
            if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
        text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
        text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)

        return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask

    def check_inputs(
        self,
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=None,
        pooled_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
        max_sequence_length=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs
            for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (
            not isinstance(prompt, str) and not isinstance(prompt, list)
        ):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )
        elif prompt_2 is not None and (
            not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
        ):
            raise ValueError(
                f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
            )

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(
                f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
            )

    @staticmethod
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
        latent_image_ids = torch.zeros(height // 2, width // 2, 3)
        latent_image_ids[..., 1] = (
            latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
        )
        latent_image_ids[..., 2] = (
            latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
        )

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = (
            latent_image_ids.shape
        )

        latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
        latent_image_ids = latent_image_ids.reshape(
            batch_size,
            latent_image_id_height * latent_image_id_width,
            latent_image_id_channels,
        )

        return latent_image_ids

    @staticmethod
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(
            batch_size, num_channels_latents, height // 2, 2, width // 2, 2
        )
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(
            batch_size, (height // 2) * (width // 2), num_channels_latents * 4
        )

        return latents

    @staticmethod
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        height = height // vae_scale_factor
        width = width // vae_scale_factor

        latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(
            batch_size, channels // (2 * 2), height * 2, width * 2
        )

        return latents

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        height = 2 * (int(height) // self.vae_scale_factor)
        width = 2 * (int(width) // self.vae_scale_factor)

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
            latent_image_ids = self._prepare_latent_image_ids(
                batch_size, height, width, device, dtype
            )
            return latents, latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = self._pack_latents(
            latents, batch_size, num_channels_latents, height, width
        )

        latent_image_ids = self._prepare_latent_image_ids(
            batch_size, height, width, device, dtype
        )

        return latents, latent_image_ids

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_mask: Optional[Union[torch.FloatTensor, List[torch.FloatTensor]]] = None,
        negative_mask: Optional[
            Union[torch.FloatTensor, List[torch.FloatTensor]]
        ] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
        timesteps: List[int] = None,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
        guidance_scale_real: float = 1.0,
        negative_prompt: Union[str, List[str]] = "",
        negative_prompt_2: Union[str, List[str]] = "",
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        no_cfg_until_timestep: int = 0,
        do_batch_cfg: bool=True,
        device=torch.device('cuda'), # TODO let this work with non-cuda stuff? Might if you set this to None
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_mask (`str` or `List[str]`, *optional*):
                The prompt or prompts to be used as a mask for the image generation. If not defined, `prompt` is used
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns:
            [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
            is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
            images.
        """

        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
        )

        # guidance_scale_real is redundant because this pipeline was originally
        # made to be backwards compatible, but to make it the default just set
        # guidance scale to be the same things.
        guidance_scale_real = guidance_scale

        self._guidance_scale = guidance_scale
        self._guidance_scale_real = guidance_scale_real
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = device or self._execution_device

        lora_scale = (
            self.joint_attention_kwargs.get("scale", None)
            if self.joint_attention_kwargs is not None
            else None
        )
        (
            prompt_embeds,
            pooled_prompt_embeds,
            text_ids,
            _prompt_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        if _prompt_mask is not None:
            prompt_mask = _prompt_mask
        assert prompt_mask is not None

        if negative_prompt_2 == "" and negative_prompt != "":
            negative_prompt_2 = negative_prompt

        negative_text_ids = text_ids
        if self._guidance_scale_real > 1.0 and (
            negative_prompt_embeds is None or negative_pooled_prompt_embeds is None
        ):
            (
                negative_prompt_embeds,
                negative_pooled_prompt_embeds,
                negative_text_ids,
                _neg_prompt_mask,
            ) = self.encode_prompt(
                prompt=negative_prompt,
                prompt_2=negative_prompt_2,
                prompt_embeds=None,
                pooled_prompt_embeds=None,
                device=device,
                num_images_per_prompt=num_images_per_prompt,
                max_sequence_length=max_sequence_length,
                lora_scale=lora_scale,
            )

            if _neg_prompt_mask is not None:
                negative_mask = _neg_prompt_mask

        assert negative_mask is not None

        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )
        self._num_timesteps = len(timesteps)

        latents = latents
        latent_image_ids = latent_image_ids
        timesteps = timesteps
        text_ids = text_ids.to(device=device)

        # handle guidance
        if self.transformer.config.guidance_embeds:
            guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
            guidance = guidance.expand(latents.shape[0])
        else:
            guidance = None

        # if use_prompt_mask and prompt_mask is not None and not zero_using_prompt_mask:
        #     print('Using masking')
        # elif use_prompt_mask and prompt_mask is not None and zero_using_prompt_mask:
        #     print('Using zeroed embeds')
        # else:
        #     print('Not using masking')

        # if self._guidance_scale_real > 1.0:
        #     print('Using classifier free guidance', self._guidance_scale_real)

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # Prepare the latent model input
                prompt_embeds_input = prompt_embeds
                pooled_prompt_embeds_input = pooled_prompt_embeds
                text_ids_input = text_ids
                latent_image_ids_input = latent_image_ids
                prompt_mask_input = prompt_mask
                latent_model_input = latents

                if guidance_scale_real > 1.0 and i >= no_cfg_until_timestep:
                    progress_bar.set_postfix(
                        {
                            'ts': timestep.detach().item() / 1000,
                            'cfg': self._guidance_scale_real,
                        },
                    )
                else:
                    progress_bar.set_postfix(
                        {
                            'ts': timestep.detach().item() / 1000,
                            'cfg': 'N/A',
                        },
                    )

                if do_batch_cfg and guidance_scale_real > 1.0 and i >= no_cfg_until_timestep:
                    # Concatenate prompt embeddings
                    prompt_embeds_input = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
                    pooled_prompt_embeds_input = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
                    
                    # Concatenate text IDs if they are used
                    # if text_ids is not None and negative_text_ids is not None:
                    #     text_ids_input = torch.cat([negative_text_ids, text_ids], dim=0)
                    
                    # Concatenate latent image IDs if they are used
                    # if latent_image_ids is not None:
                    #     latent_image_ids_input = torch.cat([latent_image_ids, latent_image_ids], dim=0)
                    
                    # Concatenate prompt masks if they are used
                    if prompt_mask is not None and negative_mask is not None:
                        prompt_mask_input = torch.cat([negative_mask, prompt_mask], dim=0)
                    # Duplicate latents for unconditional and conditional inputs
                    latent_model_input = torch.cat([latents] * 2)

                # Expand timestep to match batch size
                timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)

                # Handle guidance
                if self.transformer.config.guidance_embeds:
                    guidance = torch.tensor([guidance_scale], device=self.transformer.device)
                    guidance = guidance.expand(latent_model_input.shape[0])
                else:
                    guidance = None

                # Prepare extra transformer arguments
                extra_transformer_args = {}
                if prompt_mask is not None:
                    extra_transformer_args["attention_mask"] = prompt_mask_input.to(device=self.transformer.device).contiguous()

                # Forward pass through the transformer
                noise_pred = self.transformer(
                    hidden_states=latent_model_input.to(device=self.transformer.device).contiguous() ,
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds_input.to(device=self.transformer.device).contiguous() ,
                    encoder_hidden_states=prompt_embeds_input.to(device=self.transformer.device).contiguous() ,
                    txt_ids=text_ids_input.to(device=self.transformer.device).contiguous() if text_ids is not None else None,
                    img_ids=latent_image_ids_input.to(device=self.transformer.device).contiguous() if latent_image_ids is not None else None,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                    **extra_transformer_args,
                )[0]

                # Apply real CFG
                if guidance_scale_real > 1.0 and i >= no_cfg_until_timestep:
                    if do_batch_cfg:
                        # Batched CFG: Split the noise prediction into unconditional and conditional parts
                        noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale_real * (noise_pred_cond - noise_pred_uncond)
                    else:
                        # Sequential CFG: Compute unconditional noise prediction separately
                        noise_pred_uncond = self.transformer(
                            hidden_states=latents.to(device=self.transformer.device),
                            timestep=timestep / 1000,
                            guidance=guidance,
                            pooled_projections=negative_pooled_prompt_embeds.to(device=self.transformer.device),
                            encoder_hidden_states=negative_prompt_embeds.to(device=self.transformer.device),
                            txt_ids=negative_text_ids.to(device=self.transformer.device) if negative_text_ids is not None else None,
                            img_ids=latent_image_ids.to(device=self.transformer.device) if latent_image_ids is not None else None,
                            joint_attention_kwargs=self.joint_attention_kwargs,
                            return_dict=False,
                        )[0]

                        # Combine conditional and unconditional predictions
                        noise_pred = noise_pred_uncond + guidance_scale_real * (noise_pred - noise_pred_uncond)

                # Compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                # Ensure latents have the correct dtype
                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        latents = latents.to(latents_dtype)

                # Callback at the end of the step, if provided
                if callback_on_step_end is not None:
                    callback_kwargs = {k: locals()[k] for k in callback_on_step_end_tensor_inputs}
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
                    latents = callback_outputs.get("latents", latents)
                    prompt_embeds = callback_outputs.get("prompt_embeds", prompt_embeds)

                # Update the progress bar
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                # Mark step for XLA devices
                if XLA_AVAILABLE:
                    xm.mark_step()

        if output_type == "latent":
            image = latents

        else:
            latents = self._unpack_latents(
                latents, height, width, self.vae_scale_factor
            )
            latents = (
                latents / self.vae.config.scaling_factor
            ) + self.vae.config.shift_factor

            image = self.vae.decode(
                latents,
                return_dict=False,
            )[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)