jimmycarter
commited on
Upload transformer.py
Browse files- transformer/transformer.py +757 -0
transformer/transformer.py
ADDED
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI, The HuggingFace Team, The InstantX Team, and Terminus Research Group. All rights reserved.
|
2 |
+
#
|
3 |
+
# Originally licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# Updated to "Affero GENERAL PUBLIC LICENSE Version 3, 19 November 2007" via extensive updates to attn_mask usage.
|
5 |
+
|
6 |
+
from typing import Any, Dict, List, Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
13 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
14 |
+
from diffusers.models.attention import FeedForward
|
15 |
+
from diffusers.models.attention_processor import (
|
16 |
+
Attention,
|
17 |
+
apply_rope,
|
18 |
+
)
|
19 |
+
from diffusers.models.modeling_utils import ModelMixin
|
20 |
+
from diffusers.models.normalization import (
|
21 |
+
AdaLayerNormContinuous,
|
22 |
+
AdaLayerNormZero,
|
23 |
+
AdaLayerNormZeroSingle,
|
24 |
+
)
|
25 |
+
from diffusers.utils import (
|
26 |
+
USE_PEFT_BACKEND,
|
27 |
+
is_torch_version,
|
28 |
+
logging,
|
29 |
+
scale_lora_layers,
|
30 |
+
unscale_lora_layers,
|
31 |
+
)
|
32 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
33 |
+
from diffusers.models.embeddings import (
|
34 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
35 |
+
CombinedTimestepTextProjEmbeddings,
|
36 |
+
)
|
37 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
+
|
42 |
+
|
43 |
+
class FluxSingleAttnProcessor2_0:
|
44 |
+
r"""
|
45 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self):
|
49 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
50 |
+
raise ImportError(
|
51 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
52 |
+
)
|
53 |
+
|
54 |
+
def __call__(
|
55 |
+
self,
|
56 |
+
attn: Attention,
|
57 |
+
hidden_states: torch.Tensor,
|
58 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
59 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
60 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
61 |
+
) -> torch.Tensor:
|
62 |
+
input_ndim = hidden_states.ndim
|
63 |
+
|
64 |
+
if input_ndim == 4:
|
65 |
+
batch_size, channel, height, width = hidden_states.shape
|
66 |
+
hidden_states = hidden_states.view(
|
67 |
+
batch_size, channel, height * width
|
68 |
+
).transpose(1, 2)
|
69 |
+
|
70 |
+
batch_size, _, _ = hidden_states.shape
|
71 |
+
query = attn.to_q(hidden_states)
|
72 |
+
key = attn.to_k(hidden_states)
|
73 |
+
value = attn.to_v(hidden_states)
|
74 |
+
|
75 |
+
inner_dim = key.shape[-1]
|
76 |
+
head_dim = inner_dim // attn.heads
|
77 |
+
|
78 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
79 |
+
|
80 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
81 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
82 |
+
|
83 |
+
if attn.norm_q is not None:
|
84 |
+
query = attn.norm_q(query)
|
85 |
+
if attn.norm_k is not None:
|
86 |
+
key = attn.norm_k(key)
|
87 |
+
|
88 |
+
# Apply RoPE if needed
|
89 |
+
if image_rotary_emb is not None:
|
90 |
+
# YiYi to-do: update uising apply_rotary_emb
|
91 |
+
# from ..embeddings import apply_rotary_emb
|
92 |
+
# query = apply_rotary_emb(query, image_rotary_emb)
|
93 |
+
# key = apply_rotary_emb(key, image_rotary_emb)
|
94 |
+
query, key = apply_rope(query, key, image_rotary_emb)
|
95 |
+
|
96 |
+
if attention_mask is not None:
|
97 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
98 |
+
attention_mask = (attention_mask > 0).bool()
|
99 |
+
attention_mask = attention_mask.to(
|
100 |
+
device=hidden_states.device, dtype=hidden_states.dtype
|
101 |
+
)
|
102 |
+
|
103 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
104 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
105 |
+
hidden_states = F.scaled_dot_product_attention(
|
106 |
+
query,
|
107 |
+
key,
|
108 |
+
value,
|
109 |
+
dropout_p=0.0,
|
110 |
+
is_causal=False,
|
111 |
+
attn_mask=attention_mask,
|
112 |
+
)
|
113 |
+
|
114 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
115 |
+
batch_size, -1, attn.heads * head_dim
|
116 |
+
)
|
117 |
+
hidden_states = hidden_states.to(query.dtype)
|
118 |
+
|
119 |
+
if input_ndim == 4:
|
120 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
121 |
+
batch_size, channel, height, width
|
122 |
+
)
|
123 |
+
|
124 |
+
return hidden_states
|
125 |
+
|
126 |
+
|
127 |
+
class FluxAttnProcessor2_0:
|
128 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
129 |
+
|
130 |
+
def __init__(self):
|
131 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
132 |
+
raise ImportError(
|
133 |
+
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
134 |
+
)
|
135 |
+
|
136 |
+
def __call__(
|
137 |
+
self,
|
138 |
+
attn: Attention,
|
139 |
+
hidden_states: torch.FloatTensor,
|
140 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
141 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
142 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
143 |
+
) -> torch.FloatTensor:
|
144 |
+
input_ndim = hidden_states.ndim
|
145 |
+
if input_ndim == 4:
|
146 |
+
batch_size, channel, height, width = hidden_states.shape
|
147 |
+
hidden_states = hidden_states.view(
|
148 |
+
batch_size, channel, height * width
|
149 |
+
).transpose(1, 2)
|
150 |
+
context_input_ndim = encoder_hidden_states.ndim
|
151 |
+
if context_input_ndim == 4:
|
152 |
+
batch_size, channel, height, width = encoder_hidden_states.shape
|
153 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
154 |
+
batch_size, channel, height * width
|
155 |
+
).transpose(1, 2)
|
156 |
+
|
157 |
+
batch_size = encoder_hidden_states.shape[0]
|
158 |
+
|
159 |
+
# `sample` projections.
|
160 |
+
query = attn.to_q(hidden_states)
|
161 |
+
key = attn.to_k(hidden_states)
|
162 |
+
value = attn.to_v(hidden_states)
|
163 |
+
|
164 |
+
inner_dim = key.shape[-1]
|
165 |
+
head_dim = inner_dim // attn.heads
|
166 |
+
|
167 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
168 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
169 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
170 |
+
|
171 |
+
if attn.norm_q is not None:
|
172 |
+
query = attn.norm_q(query)
|
173 |
+
if attn.norm_k is not None:
|
174 |
+
key = attn.norm_k(key)
|
175 |
+
|
176 |
+
# `context` projections.
|
177 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
178 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
179 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
180 |
+
|
181 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
182 |
+
batch_size, -1, attn.heads, head_dim
|
183 |
+
).transpose(1, 2)
|
184 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
185 |
+
batch_size, -1, attn.heads, head_dim
|
186 |
+
).transpose(1, 2)
|
187 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
188 |
+
batch_size, -1, attn.heads, head_dim
|
189 |
+
).transpose(1, 2)
|
190 |
+
|
191 |
+
if attn.norm_added_q is not None:
|
192 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
193 |
+
encoder_hidden_states_query_proj
|
194 |
+
)
|
195 |
+
if attn.norm_added_k is not None:
|
196 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
197 |
+
encoder_hidden_states_key_proj
|
198 |
+
)
|
199 |
+
|
200 |
+
# attention
|
201 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
202 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
203 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
204 |
+
|
205 |
+
if image_rotary_emb is not None:
|
206 |
+
# YiYi to-do: update uising apply_rotary_emb
|
207 |
+
# from ..embeddings import apply_rotary_emb
|
208 |
+
# query = apply_rotary_emb(query, image_rotary_emb)
|
209 |
+
# key = apply_rotary_emb(key, image_rotary_emb)
|
210 |
+
query, key = apply_rope(query, key, image_rotary_emb)
|
211 |
+
|
212 |
+
if attention_mask is not None:
|
213 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
214 |
+
attention_mask = (attention_mask > 0).bool()
|
215 |
+
attention_mask = attention_mask.to(
|
216 |
+
device=hidden_states.device, dtype=hidden_states.dtype
|
217 |
+
)
|
218 |
+
|
219 |
+
hidden_states = F.scaled_dot_product_attention(
|
220 |
+
query,
|
221 |
+
key,
|
222 |
+
value,
|
223 |
+
dropout_p=0.0,
|
224 |
+
is_causal=False,
|
225 |
+
attn_mask=attention_mask,
|
226 |
+
)
|
227 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
228 |
+
batch_size, -1, attn.heads * head_dim
|
229 |
+
)
|
230 |
+
hidden_states = hidden_states.to(query.dtype)
|
231 |
+
|
232 |
+
encoder_hidden_states, hidden_states = (
|
233 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
234 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
235 |
+
)
|
236 |
+
|
237 |
+
# linear proj
|
238 |
+
hidden_states = attn.to_out[0](hidden_states)
|
239 |
+
# dropout
|
240 |
+
hidden_states = attn.to_out[1](hidden_states)
|
241 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
242 |
+
|
243 |
+
if input_ndim == 4:
|
244 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
245 |
+
batch_size, channel, height, width
|
246 |
+
)
|
247 |
+
if context_input_ndim == 4:
|
248 |
+
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
249 |
+
batch_size, channel, height, width
|
250 |
+
)
|
251 |
+
|
252 |
+
return hidden_states, encoder_hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
# YiYi to-do: refactor rope related functions/classes
|
256 |
+
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
257 |
+
assert dim % 2 == 0, "The dimension must be even."
|
258 |
+
|
259 |
+
scale = (
|
260 |
+
torch.arange(
|
261 |
+
0,
|
262 |
+
dim,
|
263 |
+
2,
|
264 |
+
dtype=torch.float64, # torch.float32 if torch.backends.mps.is_available() else
|
265 |
+
device=pos.device,
|
266 |
+
)
|
267 |
+
/ dim
|
268 |
+
)
|
269 |
+
omega = 1.0 / (theta**scale)
|
270 |
+
|
271 |
+
batch_size, seq_length = pos.shape
|
272 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
273 |
+
cos_out = torch.cos(out)
|
274 |
+
sin_out = torch.sin(out)
|
275 |
+
|
276 |
+
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
277 |
+
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
278 |
+
return out.float()
|
279 |
+
|
280 |
+
|
281 |
+
# YiYi to-do: refactor rope related functions/classes
|
282 |
+
class EmbedND(nn.Module):
|
283 |
+
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
|
284 |
+
super().__init__()
|
285 |
+
self.dim = dim
|
286 |
+
self.theta = theta
|
287 |
+
self.axes_dim = axes_dim
|
288 |
+
|
289 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
290 |
+
n_axes = ids.shape[-1]
|
291 |
+
emb = torch.cat(
|
292 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
293 |
+
dim=-3,
|
294 |
+
)
|
295 |
+
|
296 |
+
return emb.unsqueeze(1)
|
297 |
+
|
298 |
+
|
299 |
+
def expand_flux_attention_mask(
|
300 |
+
hidden_states: torch.Tensor,
|
301 |
+
attn_mask: torch.Tensor,
|
302 |
+
) -> torch.Tensor:
|
303 |
+
"""
|
304 |
+
Expand a mask so that the image is included.
|
305 |
+
"""
|
306 |
+
bsz = attn_mask.shape[0]
|
307 |
+
assert bsz == hidden_states.shape[0]
|
308 |
+
residual_seq_len = hidden_states.shape[1]
|
309 |
+
mask_seq_len = attn_mask.shape[1]
|
310 |
+
|
311 |
+
expanded_mask = torch.ones(bsz, residual_seq_len)
|
312 |
+
expanded_mask[:, :mask_seq_len] = attn_mask
|
313 |
+
|
314 |
+
return expanded_mask
|
315 |
+
|
316 |
+
|
317 |
+
@maybe_allow_in_graph
|
318 |
+
class FluxSingleTransformerBlock(nn.Module):
|
319 |
+
r"""
|
320 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
321 |
+
|
322 |
+
Reference: https://arxiv.org/abs/2403.03206
|
323 |
+
|
324 |
+
Parameters:
|
325 |
+
dim (`int`): The number of channels in the input and output.
|
326 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
327 |
+
attention_head_dim (`int`): The number of channels in each head.
|
328 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
329 |
+
processing of `context` conditions.
|
330 |
+
"""
|
331 |
+
|
332 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
333 |
+
super().__init__()
|
334 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
335 |
+
|
336 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
337 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
338 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
339 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
340 |
+
|
341 |
+
processor = FluxSingleAttnProcessor2_0()
|
342 |
+
self.attn = Attention(
|
343 |
+
query_dim=dim,
|
344 |
+
cross_attention_dim=None,
|
345 |
+
dim_head=attention_head_dim,
|
346 |
+
heads=num_attention_heads,
|
347 |
+
out_dim=dim,
|
348 |
+
bias=True,
|
349 |
+
processor=processor,
|
350 |
+
qk_norm="rms_norm",
|
351 |
+
eps=1e-6,
|
352 |
+
pre_only=True,
|
353 |
+
)
|
354 |
+
|
355 |
+
def forward(
|
356 |
+
self,
|
357 |
+
hidden_states: torch.FloatTensor,
|
358 |
+
temb: torch.FloatTensor,
|
359 |
+
image_rotary_emb=None,
|
360 |
+
attention_mask: Optional[torch.Tensor] = None,
|
361 |
+
):
|
362 |
+
residual = hidden_states
|
363 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
364 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
365 |
+
|
366 |
+
if attention_mask is not None:
|
367 |
+
attention_mask = expand_flux_attention_mask(
|
368 |
+
hidden_states,
|
369 |
+
attention_mask,
|
370 |
+
)
|
371 |
+
|
372 |
+
attn_output = self.attn(
|
373 |
+
hidden_states=norm_hidden_states,
|
374 |
+
image_rotary_emb=image_rotary_emb,
|
375 |
+
attention_mask=attention_mask,
|
376 |
+
)
|
377 |
+
|
378 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
379 |
+
gate = gate.unsqueeze(1)
|
380 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
381 |
+
hidden_states = residual + hidden_states
|
382 |
+
|
383 |
+
return hidden_states
|
384 |
+
|
385 |
+
|
386 |
+
@maybe_allow_in_graph
|
387 |
+
class FluxTransformerBlock(nn.Module):
|
388 |
+
r"""
|
389 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
390 |
+
|
391 |
+
Reference: https://arxiv.org/abs/2403.03206
|
392 |
+
|
393 |
+
Parameters:
|
394 |
+
dim (`int`): The number of channels in the input and output.
|
395 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
396 |
+
attention_head_dim (`int`): The number of channels in each head.
|
397 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
398 |
+
processing of `context` conditions.
|
399 |
+
"""
|
400 |
+
|
401 |
+
def __init__(
|
402 |
+
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
|
403 |
+
):
|
404 |
+
super().__init__()
|
405 |
+
|
406 |
+
self.norm1 = AdaLayerNormZero(dim)
|
407 |
+
|
408 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
409 |
+
|
410 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
411 |
+
processor = FluxAttnProcessor2_0()
|
412 |
+
else:
|
413 |
+
raise ValueError(
|
414 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
415 |
+
)
|
416 |
+
self.attn = Attention(
|
417 |
+
query_dim=dim,
|
418 |
+
cross_attention_dim=None,
|
419 |
+
added_kv_proj_dim=dim,
|
420 |
+
dim_head=attention_head_dim,
|
421 |
+
heads=num_attention_heads,
|
422 |
+
out_dim=dim,
|
423 |
+
context_pre_only=False,
|
424 |
+
bias=True,
|
425 |
+
processor=processor,
|
426 |
+
qk_norm=qk_norm,
|
427 |
+
eps=eps,
|
428 |
+
)
|
429 |
+
|
430 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
431 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
432 |
+
|
433 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
434 |
+
self.ff_context = FeedForward(
|
435 |
+
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
436 |
+
)
|
437 |
+
|
438 |
+
# let chunk size default to None
|
439 |
+
self._chunk_size = None
|
440 |
+
self._chunk_dim = 0
|
441 |
+
|
442 |
+
def forward(
|
443 |
+
self,
|
444 |
+
hidden_states: torch.FloatTensor,
|
445 |
+
encoder_hidden_states: torch.FloatTensor,
|
446 |
+
temb: torch.FloatTensor,
|
447 |
+
image_rotary_emb=None,
|
448 |
+
attention_mask: Optional[torch.Tensor] = None,
|
449 |
+
):
|
450 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
451 |
+
hidden_states, emb=temb
|
452 |
+
)
|
453 |
+
|
454 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
455 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
456 |
+
)
|
457 |
+
|
458 |
+
if attention_mask is not None:
|
459 |
+
attention_mask = expand_flux_attention_mask(
|
460 |
+
torch.cat([encoder_hidden_states, hidden_states], dim=1),
|
461 |
+
attention_mask,
|
462 |
+
)
|
463 |
+
|
464 |
+
# Attention.
|
465 |
+
attn_output, context_attn_output = self.attn(
|
466 |
+
hidden_states=norm_hidden_states,
|
467 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
468 |
+
image_rotary_emb=image_rotary_emb,
|
469 |
+
attention_mask=attention_mask,
|
470 |
+
)
|
471 |
+
|
472 |
+
# Process attention outputs for the `hidden_states`.
|
473 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
474 |
+
hidden_states = hidden_states + attn_output
|
475 |
+
|
476 |
+
norm_hidden_states = self.norm2(hidden_states)
|
477 |
+
norm_hidden_states = (
|
478 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
479 |
+
)
|
480 |
+
|
481 |
+
ff_output = self.ff(norm_hidden_states)
|
482 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
483 |
+
|
484 |
+
hidden_states = hidden_states + ff_output
|
485 |
+
|
486 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
487 |
+
|
488 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
489 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
490 |
+
|
491 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
492 |
+
norm_encoder_hidden_states = (
|
493 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
494 |
+
+ c_shift_mlp[:, None]
|
495 |
+
)
|
496 |
+
|
497 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
498 |
+
encoder_hidden_states = (
|
499 |
+
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
500 |
+
)
|
501 |
+
|
502 |
+
return encoder_hidden_states, hidden_states
|
503 |
+
|
504 |
+
|
505 |
+
class FluxTransformer2DModelWithMasking(
|
506 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
507 |
+
):
|
508 |
+
"""
|
509 |
+
The Transformer model introduced in Flux.
|
510 |
+
|
511 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
512 |
+
|
513 |
+
Parameters:
|
514 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
515 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
516 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
517 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
518 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
519 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
520 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
521 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
522 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
523 |
+
"""
|
524 |
+
|
525 |
+
_supports_gradient_checkpointing = True
|
526 |
+
|
527 |
+
@register_to_config
|
528 |
+
def __init__(
|
529 |
+
self,
|
530 |
+
patch_size: int = 1,
|
531 |
+
in_channels: int = 64,
|
532 |
+
num_layers: int = 19,
|
533 |
+
num_single_layers: int = 38,
|
534 |
+
attention_head_dim: int = 128,
|
535 |
+
num_attention_heads: int = 24,
|
536 |
+
joint_attention_dim: int = 4096,
|
537 |
+
pooled_projection_dim: int = 768,
|
538 |
+
guidance_embeds: bool = False,
|
539 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
540 |
+
):
|
541 |
+
super().__init__()
|
542 |
+
self.out_channels = in_channels
|
543 |
+
self.inner_dim = (
|
544 |
+
self.config.num_attention_heads * self.config.attention_head_dim
|
545 |
+
)
|
546 |
+
|
547 |
+
self.pos_embed = EmbedND(
|
548 |
+
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
549 |
+
)
|
550 |
+
text_time_guidance_cls = (
|
551 |
+
CombinedTimestepGuidanceTextProjEmbeddings
|
552 |
+
if guidance_embeds
|
553 |
+
else CombinedTimestepTextProjEmbeddings
|
554 |
+
)
|
555 |
+
self.time_text_embed = text_time_guidance_cls(
|
556 |
+
embedding_dim=self.inner_dim,
|
557 |
+
pooled_projection_dim=self.config.pooled_projection_dim,
|
558 |
+
)
|
559 |
+
|
560 |
+
self.context_embedder = nn.Linear(
|
561 |
+
self.config.joint_attention_dim, self.inner_dim
|
562 |
+
)
|
563 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
564 |
+
|
565 |
+
self.transformer_blocks = nn.ModuleList(
|
566 |
+
[
|
567 |
+
FluxTransformerBlock(
|
568 |
+
dim=self.inner_dim,
|
569 |
+
num_attention_heads=self.config.num_attention_heads,
|
570 |
+
attention_head_dim=self.config.attention_head_dim,
|
571 |
+
)
|
572 |
+
for i in range(self.config.num_layers)
|
573 |
+
]
|
574 |
+
)
|
575 |
+
|
576 |
+
self.single_transformer_blocks = nn.ModuleList(
|
577 |
+
[
|
578 |
+
FluxSingleTransformerBlock(
|
579 |
+
dim=self.inner_dim,
|
580 |
+
num_attention_heads=self.config.num_attention_heads,
|
581 |
+
attention_head_dim=self.config.attention_head_dim,
|
582 |
+
)
|
583 |
+
for i in range(self.config.num_single_layers)
|
584 |
+
]
|
585 |
+
)
|
586 |
+
|
587 |
+
self.norm_out = AdaLayerNormContinuous(
|
588 |
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
589 |
+
)
|
590 |
+
self.proj_out = nn.Linear(
|
591 |
+
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
|
592 |
+
)
|
593 |
+
|
594 |
+
self.gradient_checkpointing = False
|
595 |
+
|
596 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
597 |
+
if hasattr(module, "gradient_checkpointing"):
|
598 |
+
module.gradient_checkpointing = value
|
599 |
+
|
600 |
+
def forward(
|
601 |
+
self,
|
602 |
+
hidden_states: torch.Tensor,
|
603 |
+
encoder_hidden_states: torch.Tensor = None,
|
604 |
+
pooled_projections: torch.Tensor = None,
|
605 |
+
timestep: torch.LongTensor = None,
|
606 |
+
img_ids: torch.Tensor = None,
|
607 |
+
txt_ids: torch.Tensor = None,
|
608 |
+
guidance: torch.Tensor = None,
|
609 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
610 |
+
return_dict: bool = True,
|
611 |
+
attention_mask: Optional[torch.Tensor] = None,
|
612 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
613 |
+
"""
|
614 |
+
The [`FluxTransformer2DModelWithMasking`] forward method.
|
615 |
+
|
616 |
+
Args:
|
617 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
618 |
+
Input `hidden_states`.
|
619 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
620 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
621 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
622 |
+
from the embeddings of input conditions.
|
623 |
+
timestep ( `torch.LongTensor`):
|
624 |
+
Used to indicate denoising step.
|
625 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
626 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
627 |
+
joint_attention_kwargs (`dict`, *optional*):
|
628 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
629 |
+
`self.processor` in
|
630 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
631 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
632 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
633 |
+
tuple.
|
634 |
+
|
635 |
+
Returns:
|
636 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
637 |
+
`tuple` where the first element is the sample tensor.
|
638 |
+
"""
|
639 |
+
if joint_attention_kwargs is not None:
|
640 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
641 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
642 |
+
else:
|
643 |
+
lora_scale = 1.0
|
644 |
+
|
645 |
+
if USE_PEFT_BACKEND:
|
646 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
647 |
+
scale_lora_layers(self, lora_scale)
|
648 |
+
else:
|
649 |
+
if (
|
650 |
+
joint_attention_kwargs is not None
|
651 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
652 |
+
):
|
653 |
+
logger.warning(
|
654 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
655 |
+
)
|
656 |
+
hidden_states = self.x_embedder(hidden_states)
|
657 |
+
|
658 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
659 |
+
if guidance is not None:
|
660 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
661 |
+
else:
|
662 |
+
guidance = None
|
663 |
+
temb = (
|
664 |
+
self.time_text_embed(timestep, pooled_projections)
|
665 |
+
if guidance is None
|
666 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
667 |
+
)
|
668 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
669 |
+
|
670 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
671 |
+
image_rotary_emb = self.pos_embed(ids)
|
672 |
+
|
673 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
674 |
+
if self.training and self.gradient_checkpointing:
|
675 |
+
|
676 |
+
def create_custom_forward(module, return_dict=None):
|
677 |
+
def custom_forward(*inputs):
|
678 |
+
if return_dict is not None:
|
679 |
+
return module(*inputs, return_dict=return_dict)
|
680 |
+
else:
|
681 |
+
return module(*inputs)
|
682 |
+
|
683 |
+
return custom_forward
|
684 |
+
|
685 |
+
ckpt_kwargs: Dict[str, Any] = (
|
686 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
687 |
+
)
|
688 |
+
encoder_hidden_states, hidden_states = (
|
689 |
+
torch.utils.checkpoint.checkpoint(
|
690 |
+
create_custom_forward(block),
|
691 |
+
hidden_states,
|
692 |
+
encoder_hidden_states,
|
693 |
+
temb,
|
694 |
+
image_rotary_emb,
|
695 |
+
attention_mask,
|
696 |
+
**ckpt_kwargs,
|
697 |
+
)
|
698 |
+
)
|
699 |
+
|
700 |
+
else:
|
701 |
+
encoder_hidden_states, hidden_states = block(
|
702 |
+
hidden_states=hidden_states,
|
703 |
+
encoder_hidden_states=encoder_hidden_states,
|
704 |
+
temb=temb,
|
705 |
+
image_rotary_emb=image_rotary_emb,
|
706 |
+
attention_mask=attention_mask,
|
707 |
+
)
|
708 |
+
|
709 |
+
# Flux places the text tokens in front of the image tokens in the
|
710 |
+
# sequence.
|
711 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
712 |
+
|
713 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
714 |
+
if self.training and self.gradient_checkpointing:
|
715 |
+
|
716 |
+
def create_custom_forward(module, return_dict=None):
|
717 |
+
def custom_forward(*inputs):
|
718 |
+
if return_dict is not None:
|
719 |
+
return module(*inputs, return_dict=return_dict)
|
720 |
+
else:
|
721 |
+
return module(*inputs)
|
722 |
+
|
723 |
+
return custom_forward
|
724 |
+
|
725 |
+
ckpt_kwargs: Dict[str, Any] = (
|
726 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
727 |
+
)
|
728 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
729 |
+
create_custom_forward(block),
|
730 |
+
hidden_states,
|
731 |
+
temb,
|
732 |
+
image_rotary_emb,
|
733 |
+
attention_mask,
|
734 |
+
**ckpt_kwargs,
|
735 |
+
)
|
736 |
+
|
737 |
+
else:
|
738 |
+
hidden_states = block(
|
739 |
+
hidden_states=hidden_states,
|
740 |
+
temb=temb,
|
741 |
+
image_rotary_emb=image_rotary_emb,
|
742 |
+
attention_mask=attention_mask,
|
743 |
+
)
|
744 |
+
|
745 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
746 |
+
|
747 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
748 |
+
output = self.proj_out(hidden_states)
|
749 |
+
|
750 |
+
if USE_PEFT_BACKEND:
|
751 |
+
# remove `lora_scale` from each PEFT layer
|
752 |
+
unscale_lora_layers(self, lora_scale)
|
753 |
+
|
754 |
+
if not return_dict:
|
755 |
+
return (output,)
|
756 |
+
|
757 |
+
return Transformer2DModelOutput(sample=output)
|