flux-training
This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-schnell.
The main validation prompt used during training was:
A figurine of a character with green hair, wearing a white shirt, a black vest, and a gray cap, sitting with one hand on their knee and the other hand making a peace sign. The character is wearing a blue pendant and has a gold bracelet. In the background, there are green plants and a tree branch.
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 0
- Training steps: 158000
- Learning rate: 5e-06
- Effective batch size: 5
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 5
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 1000000,
"linear_alpha": 1,
"factor": 2,
"full_matrix": true,
"apply_preset": {
"name_algo_map": {
"transformer_blocks.[0-7]*": {
"algo": "lokr",
"factor": 4,
"linear_dim": 1000000,
"linear_alpha": 1,
"full_matrix": true
},
"transformer_blocks.[8-15]*": {
"algo": "lokr",
"factor": 5,
"linear_dim": 1000000,
"linear_alpha": 1,
"full_matrix": true
},
"transformer_blocks.[16-18]*": {
"algo": "lokr",
"factor": 10,
"linear_dim": 1000000,
"linear_alpha": 1,
"full_matrix": true
},
"single_transformer_blocks.[0-15]*": {
"algo": "lokr",
"factor": 8,
"linear_dim": 1000000,
"linear_alpha": 1,
"full_matrix": true
},
"single_transformer_blocks.[16-23]*": {
"algo": "lokr",
"factor": 5,
"linear_dim": 1000000,
"linear_alpha": 1,
"full_matrix": true
},
"single_transformer_blocks.[24-37]*": {
"algo": "lokr",
"factor": 4,
"linear_dim": 1000000,
"linear_alpha": 1,
"use_scalar": true,
"full_matrix": true
}
},
"use_fnmatch": true
}
}
Datasets
default_dataset_arb
- Repeats: 0
- Total number of images: ~39950
- Total number of aspect buckets: 6
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: closest
default_dataset_arb2
- Repeats: 0
- Total number of images: ~40005
- Total number of aspect buckets: 6
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: closest
default_dataset_arb3
- Repeats: 0
- Total number of images: ~64080
- Total number of aspect buckets: 6
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: closest
default_dataset_arb4
- Repeats: 0
- Total number of images: ~70340
- Total number of aspect buckets: 6
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: closest
default_dataset_arb5
- Repeats: 0
- Total number of images: ~31790
- Total number of aspect buckets: 6
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: closest
default_dataset_arb6
- Repeats: 0
- Total number of images: ~22035
- Total number of aspect buckets: 5
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: closest
default_dataset_arb7
- Repeats: 0
- Total number of images: ~39390
- Total number of aspect buckets: 6
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: closest
default_dataset
- Repeats: 0
- Total number of images: ~121070
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset2
- Repeats: 0
- Total number of images: ~123100
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset3
- Repeats: 0
- Total number of images: ~64355
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset4
- Repeats: 0
- Total number of images: ~69970
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset5
- Repeats: 0
- Total number of images: ~32300
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset6
- Repeats: 0
- Total number of images: ~22190
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
default_dataset7
- Repeats: 0
- Total number of images: ~39560
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-schnell'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "A figurine of a character with green hair, wearing a white shirt, a black vest, and a gray cap, sitting with one hand on their knee and the other hand making a peace sign. The character is wearing a blue pendant and has a gold bracelet. In the background, there are green plants and a tree branch."
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 23
Model tree for jimmycarter/flux-training
Base model
black-forest-labs/FLUX.1-schnell