patrickvonplaten
commited on
Commit
β’
bf41557
1
Parent(s):
78d9d91
Update README.md
Browse files
README.md
CHANGED
@@ -25,49 +25,67 @@ model-index:
|
|
25 |
value: 29.95
|
26 |
---
|
27 |
# Wav2Vec2-Large-XLSR-Latvian
|
|
|
28 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
|
29 |
on the [Latvian Common Voice dataset](https://huggingface.co/datasets/common_voice).
|
|
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
|
|
31 |
## Usage
|
32 |
The model can be used directly (without a language model) as follows:
|
|
|
33 |
```python
|
34 |
import torch
|
35 |
import torchaudio
|
36 |
from datasets import load_dataset
|
37 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
38 |
test_dataset = load_dataset("common_voice", "lv", split="test[:2%]")
|
|
|
39 |
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
40 |
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
|
|
41 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
|
42 |
# Preprocessing the datasets.
|
43 |
# We need to read the aduio files as arrays
|
44 |
def speech_file_to_array_fn(batch):
|
45 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
46 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
47 |
return batch
|
|
|
48 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
49 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|
|
50 |
with torch.no_grad():
|
51 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
53 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
54 |
print("Reference:", test_dataset["sentence"][:2])
|
55 |
```
|
|
|
56 |
## Evaluation
|
|
|
57 |
The model can be evaluated as follows on the Latvian test data of Common Voice.
|
|
|
58 |
```python
|
59 |
import torch
|
60 |
import torchaudio
|
61 |
from datasets import load_dataset, load_metric
|
62 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
63 |
import re
|
|
|
64 |
test_dataset = load_dataset("common_voice", "lv", split="test")
|
65 |
wer = load_metric("wer")
|
|
|
66 |
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
67 |
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
68 |
model.to("cuda")
|
|
|
69 |
chars_to_ignore_regex = '[,\?\.\!\;\:\"\β\%\β\β\(\)\*\β¦\β\β\']'
|
70 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
|
71 |
# Preprocessing the datasets.
|
72 |
# We need to read the aduio files as arrays
|
73 |
def speech_file_to_array_fn(batch):
|
@@ -75,7 +93,9 @@ def speech_file_to_array_fn(batch):
|
|
75 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
76 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
77 |
return batch
|
|
|
78 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
|
79 |
# Preprocessing the datasets.
|
80 |
# We need to read the audio files as arrays
|
81 |
def evaluate(batch):
|
@@ -85,8 +105,9 @@ def evaluate(batch):
|
|
85 |
pred_ids = torch.argmax(logits, dim=-1)
|
86 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
87 |
return batch
|
|
|
88 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
89 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
90 |
```
|
|
|
91 |
**Test Result**: 29.95 %
|
92 |
-
```
|
|
|
25 |
value: 29.95
|
26 |
---
|
27 |
# Wav2Vec2-Large-XLSR-Latvian
|
28 |
+
|
29 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
|
30 |
on the [Latvian Common Voice dataset](https://huggingface.co/datasets/common_voice).
|
31 |
+
|
32 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
33 |
+
|
34 |
## Usage
|
35 |
The model can be used directly (without a language model) as follows:
|
36 |
+
|
37 |
```python
|
38 |
import torch
|
39 |
import torchaudio
|
40 |
from datasets import load_dataset
|
41 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
42 |
+
|
43 |
test_dataset = load_dataset("common_voice", "lv", split="test[:2%]")
|
44 |
+
|
45 |
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
46 |
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
47 |
+
|
48 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
49 |
+
|
50 |
# Preprocessing the datasets.
|
51 |
# We need to read the aduio files as arrays
|
52 |
def speech_file_to_array_fn(batch):
|
53 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
54 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
55 |
return batch
|
56 |
+
|
57 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
58 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
59 |
+
|
60 |
with torch.no_grad():
|
61 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
+
|
64 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
65 |
print("Reference:", test_dataset["sentence"][:2])
|
66 |
```
|
67 |
+
|
68 |
## Evaluation
|
69 |
+
|
70 |
The model can be evaluated as follows on the Latvian test data of Common Voice.
|
71 |
+
|
72 |
```python
|
73 |
import torch
|
74 |
import torchaudio
|
75 |
from datasets import load_dataset, load_metric
|
76 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
77 |
import re
|
78 |
+
|
79 |
test_dataset = load_dataset("common_voice", "lv", split="test")
|
80 |
wer = load_metric("wer")
|
81 |
+
|
82 |
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
83 |
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
|
84 |
model.to("cuda")
|
85 |
+
|
86 |
chars_to_ignore_regex = '[,\?\.\!\;\:\"\β\%\β\β\(\)\*\β¦\β\β\']'
|
87 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
88 |
+
|
89 |
# Preprocessing the datasets.
|
90 |
# We need to read the aduio files as arrays
|
91 |
def speech_file_to_array_fn(batch):
|
|
|
93 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
94 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
95 |
return batch
|
96 |
+
|
97 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
98 |
+
|
99 |
# Preprocessing the datasets.
|
100 |
# We need to read the audio files as arrays
|
101 |
def evaluate(batch):
|
|
|
105 |
pred_ids = torch.argmax(logits, dim=-1)
|
106 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
107 |
return batch
|
108 |
+
|
109 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
110 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
111 |
```
|
112 |
+
|
113 |
**Test Result**: 29.95 %
|
|