metadata
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- cifar10
metrics:
- accuracy
model-index:
- name: cifar10_outputs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10
type: cifar10
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.991421568627451
- task:
type: image-classification
name: Image Classification
dataset:
name: cifar10
type: cifar10
config: plain_text
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9674
verified: true
- name: Precision Macro
type: precision
value: 0.9679512973887299
verified: true
- name: Precision Micro
type: precision
value: 0.9674
verified: true
- name: Precision Weighted
type: precision
value: 0.9679512973887299
verified: true
- name: Recall Macro
type: recall
value: 0.9673999999999999
verified: true
- name: Recall Micro
type: recall
value: 0.9674
verified: true
- name: Recall Weighted
type: recall
value: 0.9674
verified: true
- name: F1 Macro
type: f1
value: 0.9674620969256708
verified: true
- name: F1 Micro
type: f1
value: 0.9674000000000001
verified: true
- name: F1 Weighted
type: f1
value: 0.967462096925671
verified: true
- name: loss
type: loss
value: 0.1527363657951355
verified: true
cifar10_outputs
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the cifar10 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0806
- Accuracy: 0.9914
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 17
- eval_batch_size: 17
- seed: 1337
- distributed_type: IPU
- gradient_accumulation_steps: 128
- total_train_batch_size: 8704
- total_eval_batch_size: 272
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 100.0
- training precision: Mixed Precision
Training results
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cpu
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1