|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" BERT model configuration""" |
|
|
|
from transformers import PretrainedConfig |
|
|
|
|
|
class JinaBertConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to |
|
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the BERT |
|
[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
window_size (`tuple`, *optional*, defaults to `(-1, -1)`): If not the default, use local attention |
|
""" |
|
|
|
model_type = "bert" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
window_size=(-1, -1), |
|
dense_seq_output=False, |
|
mlp_type='mlp', |
|
mlp_checkpoint_lvl=0, |
|
last_layer_subset=False, |
|
fused_dropout_add_ln=False, |
|
fused_bias_fc=False, |
|
pad_vocab_size_multiple=1, |
|
use_flash_attn=True, |
|
use_qk_norm=True, |
|
emb_pooler=None, |
|
classifier_dropout=None, |
|
num_loras=5, |
|
**kwargs, |
|
): |
|
assert 'position_embedding_type' not in kwargs |
|
assert 'max_position_embeddings' not in kwargs |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
if mlp_type == 'fused_mlp' and hidden_act not in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]: |
|
raise ValueError('Fused MLP only supports approximate gelu') |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.window_size = window_size |
|
self.dense_seq_output = dense_seq_output |
|
self.mlp_type= mlp_type |
|
self.mlp_checkpoint_lvl = mlp_checkpoint_lvl |
|
self.last_layer_subset = last_layer_subset |
|
self.fused_dropout_add_ln = fused_dropout_add_ln |
|
self.fused_bias_fc = fused_bias_fc |
|
self.pad_vocab_size_multiple = pad_vocab_size_multiple |
|
self.use_flash_attn = use_flash_attn |
|
self.use_qk_norm = use_qk_norm |
|
self.emb_pooler = emb_pooler |
|
self.classifier_dropout = classifier_dropout |
|
self.num_loras = num_loras |