|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from copy import deepcopy |
|
from typing import Any, Dict, Optional, Union |
|
|
|
from transformers import PretrainedConfig, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
""" Jina CLIP model configuration """ |
|
|
|
|
|
class JinaCLIPTextConfig(PretrainedConfig): |
|
model_type = 'jina_clip_text' |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int = 768, |
|
hf_model_name_or_path: str = 'jinaai/jina-bert-v2-base-en-flash', |
|
hf_model_config_kwargs: Optional[Dict[str, Any]] = None, |
|
pooler_type: Optional[str] = None, |
|
proj_type: Optional[str] = None, |
|
proj_bias: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.embed_dim = embed_dim |
|
self.hf_model_name_or_path = hf_model_name_or_path |
|
self.hf_model_config_kwargs = hf_model_config_kwargs or {} |
|
self.pooler_type = pooler_type |
|
self.proj_type = proj_type |
|
self.proj_bias = proj_bias |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> 'PretrainedConfig': |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
configdict, kwargs = cls.get_config_dict( |
|
pretrained_model_name_or_path, **kwargs |
|
) |
|
|
|
|
|
if configdict.get('model_type') == 'jina_clip': |
|
configdict = configdict['text_config'] |
|
|
|
if ( |
|
'model_type' in configdict |
|
and hasattr(cls, 'model_type') |
|
and configdict['model_type'] != cls.model_type |
|
): |
|
logger.warning( |
|
f'You are using a model of type {configdict["model_type"]} to ' |
|
f'instantiate a model of type {cls.model_type}. This is not supported ' |
|
'for all configurations of models and can yield errors.' |
|
) |
|
|
|
return cls.from_dict(configdict, **kwargs) |
|
|
|
|
|
class JinaCLIPVisionConfig(PretrainedConfig): |
|
model_type = 'jina_clip_vision' |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int = 768, |
|
width: int = 768, |
|
image_size: int = 224, |
|
patch_size: int = 16, |
|
layers: int = 12, |
|
head_width: int = 64, |
|
mlp_ratio: float = 4.0, |
|
ls_init_value: Optional[float] = None, |
|
patch_dropout: float = 0.0, |
|
qkv_bias: bool = True, |
|
fused_layer_norm: bool = False, |
|
x_attention: bool = False, |
|
post_norm: bool = False, |
|
rope_embeddings: bool = False, |
|
pt_hw_seq_len: int = 16, |
|
intp_freq: bool = False, |
|
naive_swiglu: bool = False, |
|
subln: bool = False, |
|
drop_path_rate: float = 0.0, |
|
proj_type: Optional[str] = None, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.layers = layers |
|
self.embed_dim = embed_dim |
|
self.width = width |
|
self.head_width = head_width |
|
self.mlp_ratio = mlp_ratio |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.ls_init_value = ls_init_value |
|
self.patch_dropout = patch_dropout |
|
self.qkv_bias = qkv_bias |
|
self.fused_layer_norm = fused_layer_norm |
|
self.x_attention = x_attention |
|
self.post_norm = post_norm |
|
self.rope_embeddings = rope_embeddings |
|
self.pt_hw_seq_len = pt_hw_seq_len |
|
self.intp_freq = intp_freq |
|
self.naive_swiglu = naive_swiglu |
|
self.subln = subln |
|
self.drop_path_rate = drop_path_rate |
|
self.proj_type = proj_type |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs |
|
) -> 'PretrainedConfig': |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
configdict, kwargs = cls.get_config_dict( |
|
pretrained_model_name_or_path, **kwargs |
|
) |
|
|
|
|
|
if configdict.get('model_type') == 'jina_clip': |
|
configdict = configdict['vision_config'] |
|
|
|
if ( |
|
'model_type' in configdict |
|
and hasattr(cls, 'model_type') |
|
and configdict['model_type'] != cls.model_type |
|
): |
|
logger.warning( |
|
f'You are using a model of type {configdict["model_type"]} to ' |
|
f'instantiate a model of type {cls.model_type}. This is not supported ' |
|
'for all configurations of models and can yield errors.' |
|
) |
|
|
|
return cls.from_dict(configdict, **kwargs) |
|
|
|
|
|
class JinaCLIPConfig(PretrainedConfig): |
|
model_type = 'jina_clip' |
|
is_composition = True |
|
|
|
def __init__( |
|
self, |
|
text_config: Optional[Dict] = None, |
|
vision_config: Optional[Dict] = None, |
|
add_projections: bool = False, |
|
projection_dim: int = 768, |
|
logit_scale_init_value: float = 2.6592, |
|
use_text_flash_attn: Optional[bool] = None, |
|
use_vision_xformers: Optional[bool] = None, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
|
|
text_config_dict: Optional[Dict] = kwargs.pop('text_config_dict', None) |
|
vision_config_dict: Optional[Dict] = kwargs.pop('vision_config_dict', None) |
|
self.use_text_flash_attn = use_text_flash_attn |
|
self.use_vision_xformers = use_vision_xformers |
|
|
|
super().__init__(**kwargs) |
|
|
|
if text_config_dict is not None: |
|
if text_config is None: |
|
text_config = {} |
|
|
|
|
|
_text_config_dict = JinaCLIPTextConfig(**text_config_dict).to_dict() |
|
|
|
|
|
|
|
for key, value in _text_config_dict.items(): |
|
if ( |
|
key in text_config |
|
and value != text_config[key] |
|
and key not in ['transformers_version'] |
|
): |
|
|
|
if key in text_config_dict: |
|
message = ( |
|
f'`{key}` is found in both `text_config_dict` and ' |
|
f'`text_config` but with different values. ' |
|
f'The value `text_config_dict["{key}"]` will be used ' |
|
f'instead.' |
|
) |
|
|
|
|
|
else: |
|
message = ( |
|
f'`text_config_dict` is provided which will be used to ' |
|
f'initialize `JinaCLIPTextConfig`. The ' |
|
f'value `text_config["{key}"]` will be overriden.' |
|
) |
|
logger.info(message) |
|
|
|
|
|
text_config.update(_text_config_dict) |
|
|
|
if vision_config_dict is not None: |
|
if vision_config is None: |
|
vision_config = {} |
|
|
|
|
|
_vision_config_dict = JinaCLIPVisionConfig(**vision_config_dict).to_dict() |
|
|
|
if 'id2label' in _vision_config_dict: |
|
_vision_config_dict['id2label'] = { |
|
str(key): value |
|
for key, value in _vision_config_dict['id2label'].items() |
|
} |
|
|
|
|
|
|
|
for key, value in _vision_config_dict.items(): |
|
if ( |
|
key in vision_config |
|
and value != vision_config[key] |
|
and key not in ['transformers_version'] |
|
): |
|
|
|
if key in vision_config_dict: |
|
message = ( |
|
f'`{key}` is found in both `vision_config_dict` and ' |
|
f'`vision_config` but with different ' |
|
f'values. The value `vision_config_dict["{key}"]` will ' |
|
f'be used instead.' |
|
) |
|
|
|
|
|
else: |
|
message = ( |
|
f'`vision_config_dict` is provided which will be used to ' |
|
f'initialize `JinaCLIPVisionConfig`. ' |
|
f'The value `vision_config["{key}"]` will be overriden.' |
|
) |
|
logger.info(message) |
|
|
|
|
|
|
|
vision_config.update(_vision_config_dict) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info( |
|
'`text_config` is `None`. Initializing the `JinaCLIPTextConfig` with ' |
|
'default values.' |
|
) |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info( |
|
'`vision_config` is `None`. initializing the `JinaCLIPVisionConfig` ' |
|
'with default values.' |
|
) |
|
|
|
self.text_config = JinaCLIPTextConfig(**text_config) |
|
self.vision_config = JinaCLIPVisionConfig(**vision_config) |
|
|
|
self.add_projections = add_projections |
|
self.projection_dim = projection_dim |
|
self.logit_scale_init_value = logit_scale_init_value |
|
self.initializer_factor = 1.0 |
|
|
|
if not self.add_projections: |
|
if self.text_config.embed_dim != self.vision_config.embed_dim: |
|
raise ValueError( |
|
'When projections are disabled (`add_projections=False`), text ' |
|
'and vision towers need to have the same embedding dimensionality. ' |
|
f'Currently text embedding dim is {self.text_config.embed_dim} != ' |
|
f'{self.vision_config.embed_dim} of the vision tower. ' |
|
'Either set the same output dim for both towers, or enable ' |
|
'projections with `add_projections=True`.' |
|
) |
|
|
|
@classmethod |
|
def from_text_vision_configs( |
|
cls, |
|
text_config: JinaCLIPTextConfig, |
|
vision_config: JinaCLIPVisionConfig, |
|
**kwargs, |
|
): |
|
return cls( |
|
text_config=text_config.to_dict(), |
|
vision_config=vision_config.to_dict(), |
|
projection_dim=text_config.projection_dim, |
|
**kwargs, |
|
) |
|
|
|
def to_dict(self): |
|
output = deepcopy(self.__dict__) |
|
output['text_config'] = self.text_config.to_dict() |
|
output['vision_config'] = self.vision_config.to_dict() |
|
output['model_type'] = self.__class__.model_type |
|
return output |
|
|