|
import base64 |
|
import json |
|
import os |
|
from io import BytesIO |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import requests |
|
import torch |
|
from PIL import Image |
|
from torch import nn |
|
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoTokenizer |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
tokenizer_name_or_path: Optional[str] = None, |
|
image_processor_name_or_path: Optional[str] = None, |
|
max_seq_length: Optional[int] = None, |
|
config_kwargs: Optional[Dict[str, Any]] = None, |
|
model_kwargs: Optional[Dict[str, Any]] = None, |
|
tokenizer_kwargs: Optional[Dict[str, Any]] = None, |
|
image_processor_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> None: |
|
super(Transformer, self).__init__() |
|
|
|
config_kwargs = config_kwargs or {} |
|
model_kwargs = model_kwargs or {} |
|
tokenizer_kwargs = tokenizer_kwargs or {} |
|
image_processor_kwargs = image_processor_kwargs or {} |
|
|
|
config = AutoConfig.from_pretrained(model_name_or_path, **config_kwargs) |
|
self.model = AutoModel.from_pretrained( |
|
model_name_or_path, config=config, **model_kwargs |
|
) |
|
if max_seq_length is not None and "model_max_length" not in tokenizer_kwargs: |
|
tokenizer_kwargs["model_max_length"] = max_seq_length |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_name_or_path or model_name_or_path, |
|
**tokenizer_kwargs, |
|
) |
|
self.image_processor = AutoImageProcessor.from_pretrained( |
|
image_processor_name_or_path or model_name_or_path, |
|
**image_processor_kwargs, |
|
) |
|
|
|
|
|
if max_seq_length is None: |
|
if ( |
|
hasattr(self.model, "config") |
|
and hasattr(self.model.config, "max_position_embeddings") |
|
and hasattr(self.tokenizer, "model_max_length") |
|
): |
|
max_seq_length = min( |
|
self.model.config.max_position_embeddings, |
|
self.tokenizer.model_max_length, |
|
) |
|
self.max_seq_length = max_seq_length |
|
if tokenizer_name_or_path is not None: |
|
self.model.config.tokenizer_class = self.tokenizer.__class__.__name__ |
|
|
|
@staticmethod |
|
def _decode_data_image(data_image_str: str) -> Image.Image: |
|
header, data = data_image_str.split(",", 1) |
|
image_data = base64.b64decode(data) |
|
return Image.open(BytesIO(image_data)) |
|
|
|
def tokenize( |
|
self, texts: List[Union[str, Image.Image]], padding: Union[str, bool] = True |
|
) -> Dict[str, torch.Tensor]: |
|
""" |
|
Encodes input samples. Text samples are tokenized. Image URLs, image data |
|
buffers and PIL images are passed through the image processor. |
|
""" |
|
_images = [] |
|
_texts = [] |
|
_image_or_text_descriptors = [] |
|
for sample in texts: |
|
if isinstance(sample, str): |
|
if sample.startswith("http"): |
|
response = requests.get(sample) |
|
_images.append(Image.open(BytesIO(response.content)).convert("RGB")) |
|
_image_or_text_descriptors.append(0) |
|
elif sample.startswith("data:image/"): |
|
_images.append(self._decode_data_image(sample).convert("RGB")) |
|
_image_or_text_descriptors.append(0) |
|
else: |
|
try: |
|
_images.append(Image.open(sample).convert("RGB")) |
|
_image_or_text_descriptors.append(0) |
|
except Exception as e: |
|
_ = str(e) |
|
_texts.append(sample) |
|
_image_or_text_descriptors.append(1) |
|
elif isinstance(sample, Image.Image): |
|
_images.append(sample.convert("RGB")) |
|
_image_or_text_descriptors.append(0) |
|
|
|
encoding = {} |
|
if len(_texts): |
|
encoding["input_ids"] = self.tokenizer( |
|
texts, |
|
padding=padding, |
|
truncation="longest_first", |
|
return_tensors="pt", |
|
max_length=self.max_seq_length, |
|
).input_ids |
|
|
|
if len(_images): |
|
encoding["pixel_values"] = self.image_processor( |
|
_images, return_tensors="pt" |
|
).pixel_values |
|
|
|
encoding["image_text_info"] = _image_or_text_descriptors |
|
return encoding |
|
|
|
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: |
|
image_embeddings = [] |
|
text_embeddings = [] |
|
|
|
if "pixel_values" in features: |
|
image_embeddings = self.model.get_image_features(features["pixel_values"]) |
|
if "input_ids" in features: |
|
text_embeddings = self.model.get_text_features(features["input_ids"]) |
|
|
|
sentence_embedding = [] |
|
image_features = iter(image_embeddings) |
|
text_features = iter(text_embeddings) |
|
for _, _input_type in enumerate(features["image_text_info"]): |
|
if _input_type == 0: |
|
sentence_embedding.append(next(image_features)) |
|
else: |
|
sentence_embedding.append(next(text_features)) |
|
|
|
features["sentence_embedding"] = torch.stack(sentence_embedding).float() |
|
return features |
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None: |
|
self.model.save_pretrained(output_path, safe_serialization=safe_serialization) |
|
self.tokenizer.save_pretrained(output_path) |
|
self.image_processor.save_pretrained(output_path) |
|
|
|
@staticmethod |
|
def load(input_path: str) -> "Transformer": |
|
|
|
for config_name in [ |
|
"sentence_bert_config.json", |
|
"sentence_roberta_config.json", |
|
"sentence_distilbert_config.json", |
|
"sentence_camembert_config.json", |
|
"sentence_albert_config.json", |
|
"sentence_xlm-roberta_config.json", |
|
"sentence_xlnet_config.json", |
|
]: |
|
sbert_config_path = os.path.join(input_path, config_name) |
|
if os.path.exists(sbert_config_path): |
|
break |
|
|
|
with open(sbert_config_path) as fIn: |
|
config = json.load(fIn) |
|
|
|
|
|
if "config_kwargs" in config and "trust_remote_code" in config["config_kwargs"]: |
|
config["config_kwargs"].pop("trust_remote_code") |
|
if "model_kwargs" in config and "trust_remote_code" in config["model_kwargs"]: |
|
config["model_kwargs"].pop("trust_remote_code") |
|
if ( |
|
"tokenizer_kwargs" in config |
|
and "trust_remote_code" in config["tokenizer_kwargs"] |
|
): |
|
config["tokenizer_kwargs"].pop("trust_remote_code") |
|
if ( |
|
"image_processor_kwargs" in config |
|
and "trust_remote_code" in config["image_processor_kwargs"] |
|
): |
|
config["image_processor_kwargs"].pop("trust_remote_code") |
|
|
|
return Transformer(model_name_or_path=input_path, **config) |
|
|