|
import base64 |
|
import json |
|
import os |
|
from io import BytesIO |
|
from typing import Any, Dict, List, Literal, Optional, Union |
|
|
|
import requests |
|
import torch |
|
from PIL import Image |
|
from torch import nn |
|
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoTokenizer |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
model_name_or_path: str = 'jinaai/jina-clip-v2', |
|
tokenizer_name_or_path: Optional[str] = None, |
|
image_processor_name_or_path: Optional[str] = None, |
|
max_seq_length: Optional[int] = None, |
|
config_args: Optional[Dict[str, Any]] = None, |
|
model_args: Optional[Dict[str, Any]] = None, |
|
tokenizer_args: Optional[Dict[str, Any]] = None, |
|
image_processor_args: Optional[Dict[str, Any]] = None, |
|
assume_text_inputs: bool = False, |
|
cache_dir: Optional[str] = None, |
|
backend: Literal['torch', 'onnx', 'openvino'] = 'torch', |
|
**_, |
|
) -> None: |
|
""" |
|
Creates a custom SentenceTransformer module that uses `jinai/jina-clip-v2` to |
|
map sentences/images to embeddings |
|
|
|
Args: |
|
model_name_or_path (str, optional): If it is a filepath on disc, it loads |
|
the model from that path. If it is not a path, tries to construct a |
|
model from the Hugging Face Hub with that name. Defaults to |
|
'jinaai/jina-clip-v2' |
|
tokenizer_name_or_path (str, optional): If it is a filepath on disc, it |
|
loads the tokenizer from that path. If it is not a path, tries to |
|
construct a tokenizer from the Hugging Face Hub with that name. |
|
If `None` it is automatically set to the value of `model_name_or_path` |
|
image_processor_name_or_path (str, optional): If it is a filepath on disc, |
|
it loads the image processor from that path. If it is not a path, tries |
|
to construct an image processor from the Hugging Face Hub with that |
|
name. If `None` it is automatically set to the value of |
|
`model_name_or_path` |
|
max_seq_length (int, optional): The maximum sequence length of the model. |
|
If not provided, will be inferred from model or tokenizer |
|
config_args (Dict[str, Any], optional): Additional model configuration |
|
parameters to be passed to the Hugging Face Transformers config |
|
model_args (Dict[str, Any], optional): Additional model configuration |
|
parameters to be passed to the Hugging Face Transformers model |
|
tokenizer_args (Dict[str, Any], optional): Additional tokenizer |
|
configuration parameters to be passed to the Hugging Face Transformers |
|
tokenizer |
|
image_processor_args (Dict[str, Any], optional): Additional image processor |
|
configuration parameters to be passed to the Hugging Face Transformers |
|
image processor |
|
assume_text_inputs (bool, optional): If set to `True`, all inputs are |
|
treated as texts. Defaults to `False` |
|
cache_dir (str, optional): The Hugging Face Hub cache directory |
|
backend (str, optional): Computational backend, only 'torch' is supported |
|
|
|
Example: |
|
:: |
|
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
model = SentenceTransformer( |
|
'jinaai/jina-clip-v2', trust_remote_code=True |
|
) |
|
sentences_or_images = [ |
|
"The weather is lovely today.", |
|
"It's so sunny outside!", |
|
"/path/to/stadium.jpg", |
|
] |
|
embeddings = model.encode(sentences_or_images) |
|
print(embeddings.shape) |
|
# (3, 1024) |
|
|
|
# Get the similarity scores between all inputs |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities) |
|
# tensor([[1.0000, 0.6817, 0.0492], |
|
# [0.6817, 1.0000, 0.0421], |
|
# [0.0492, 0.0421, 1.0000]]) |
|
""" |
|
super(Transformer, self).__init__() |
|
if backend != 'torch': |
|
raise ValueError( |
|
f'Backend \'{backend}\' is not supported, please use \'torch\' instead' |
|
) |
|
|
|
config_kwargs = config_args or {} |
|
model_kwargs = model_args or {} |
|
tokenizer_kwargs = tokenizer_args or {} |
|
image_processor_kwargs = { |
|
'token': model_kwargs.get('token', None), |
|
'trust_remote_code': model_kwargs.get('trust_remote_code', False), |
|
'revision': model_kwargs.get('revision', None), |
|
'local_files_only': model_kwargs.get('local_files_only', None), |
|
} |
|
image_processor_kwargs.update(image_processor_args or {}) |
|
|
|
config = AutoConfig.from_pretrained( |
|
model_name_or_path, cache_dir=cache_dir, **config_kwargs |
|
) |
|
self.model = AutoModel.from_pretrained( |
|
model_name_or_path, config=config, cache_dir=cache_dir, **model_kwargs |
|
) |
|
if max_seq_length is not None and 'model_max_length' not in tokenizer_kwargs: |
|
tokenizer_kwargs['model_max_length'] = max_seq_length |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_name_or_path or model_name_or_path, |
|
cache_dir=cache_dir, |
|
**tokenizer_kwargs, |
|
) |
|
self.image_processor = AutoImageProcessor.from_pretrained( |
|
image_processor_name_or_path or model_name_or_path, |
|
cache_dir=cache_dir, |
|
**image_processor_kwargs, |
|
) |
|
self.assume_text_inputs = assume_text_inputs |
|
|
|
|
|
if max_seq_length is None: |
|
if ( |
|
hasattr(self.model, 'config') |
|
and hasattr(self.model.config, 'max_position_embeddings') |
|
and hasattr(self.tokenizer, 'model_max_length') |
|
): |
|
max_seq_length = min( |
|
self.model.config.max_position_embeddings, |
|
self.tokenizer.model_max_length, |
|
) |
|
self.max_seq_length = max_seq_length |
|
if tokenizer_name_or_path is not None: |
|
self.model.config.tokenizer_class = self.tokenizer.__class__.__name__ |
|
|
|
@staticmethod |
|
def _decode_data_image(data_image_str: str) -> Image.Image: |
|
header, data = data_image_str.split(',', 1) |
|
image_data = base64.b64decode(data) |
|
return Image.open(BytesIO(image_data)) |
|
|
|
def tokenize( |
|
self, texts: List[Union[str, Image.Image]], padding: Union[str, bool] = True |
|
) -> Dict[str, torch.Tensor]: |
|
""" |
|
Encodes input samples. Text samples are tokenized. Image URLs, image data |
|
buffers and PIL images are passed through the image processor. |
|
""" |
|
_images = [] |
|
_texts = [] |
|
_image_or_text_descriptors = [] |
|
|
|
if self.assume_text_inputs: |
|
for sample in texts: |
|
if isinstance(sample, str): |
|
_texts.append(sample) |
|
_image_or_text_descriptors.append(1) |
|
else: |
|
for sample in texts: |
|
if isinstance(sample, str): |
|
if sample.startswith('http'): |
|
try: |
|
response = requests.get(sample) |
|
_images.append( |
|
Image.open(BytesIO(response.content)).convert('RGB') |
|
) |
|
_image_or_text_descriptors.append(0) |
|
except Exception as e: |
|
_ = str(e) |
|
_texts.append(sample) |
|
_image_or_text_descriptors.append(1) |
|
elif sample.startswith('data:image/'): |
|
_images.append(self._decode_data_image(sample).convert('RGB')) |
|
_image_or_text_descriptors.append(0) |
|
else: |
|
try: |
|
_images.append(Image.open(sample).convert('RGB')) |
|
_image_or_text_descriptors.append(0) |
|
except Exception as e: |
|
_ = str(e) |
|
_texts.append(sample) |
|
_image_or_text_descriptors.append(1) |
|
elif isinstance(sample, Image.Image): |
|
_images.append(sample.convert('RGB')) |
|
_image_or_text_descriptors.append(0) |
|
|
|
encoding = {} |
|
if len(_texts): |
|
encoding['input_ids'] = self.tokenizer( |
|
_texts, |
|
padding=padding, |
|
truncation='longest_first', |
|
return_tensors='pt', |
|
max_length=self.max_seq_length, |
|
).input_ids |
|
|
|
if len(_images): |
|
encoding['pixel_values'] = self.image_processor( |
|
_images, return_tensors='pt' |
|
).pixel_values |
|
|
|
encoding['image_text_info'] = _image_or_text_descriptors |
|
return encoding |
|
|
|
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: |
|
image_embeddings = [] |
|
text_embeddings = [] |
|
|
|
if 'pixel_values' in features: |
|
image_embeddings = self.model.get_image_features(features['pixel_values']) |
|
if 'input_ids' in features: |
|
text_embeddings = self.model.get_text_features(features['input_ids']) |
|
|
|
sentence_embedding = [] |
|
image_features = iter(image_embeddings) |
|
text_features = iter(text_embeddings) |
|
for _, _input_type in enumerate(features['image_text_info']): |
|
if _input_type == 0: |
|
sentence_embedding.append(next(image_features)) |
|
else: |
|
sentence_embedding.append(next(text_features)) |
|
|
|
features['sentence_embedding'] = torch.stack(sentence_embedding).float() |
|
return features |
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None: |
|
self.model.save_pretrained(output_path, safe_serialization=safe_serialization) |
|
self.tokenizer.save_pretrained(output_path) |
|
self.image_processor.save_pretrained(output_path) |
|
|
|
@staticmethod |
|
def load(input_path: str) -> 'Transformer': |
|
|
|
for config_name in [ |
|
'sentence_bert_config.json', |
|
'sentence_roberta_config.json', |
|
'sentence_distilbert_config.json', |
|
'sentence_camembert_config.json', |
|
'sentence_albert_config.json', |
|
'sentence_xlm-roberta_config.json', |
|
'sentence_xlnet_config.json', |
|
]: |
|
sbert_config_path = os.path.join(input_path, config_name) |
|
if os.path.exists(sbert_config_path): |
|
break |
|
|
|
with open(sbert_config_path) as fIn: |
|
config = json.load(fIn) |
|
|
|
|
|
if 'config_kwargs' in config and 'trust_remote_code' in config['config_kwargs']: |
|
config['config_kwargs'].pop('trust_remote_code') |
|
if 'model_kwargs' in config and 'trust_remote_code' in config['model_kwargs']: |
|
config['model_kwargs'].pop('trust_remote_code') |
|
if ( |
|
'tokenizer_kwargs' in config |
|
and 'trust_remote_code' in config['tokenizer_kwargs'] |
|
): |
|
config['tokenizer_kwargs'].pop('trust_remote_code') |
|
if ( |
|
'image_processor_kwargs' in config |
|
and 'trust_remote_code' in config['image_processor_kwargs'] |
|
): |
|
config['image_processor_kwargs'].pop('trust_remote_code') |
|
|
|
return Transformer(model_name_or_path=input_path, **config) |
|
|