---
license: apache-2.0
language:
- en
inference: false
---
The text embedding suit trained by Jina AI, Finetuner team.
## Intented Usage & Model Info `jina-embedding-b-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. This dataset consists of 380 million pairs of sentences, which include both query-document pairs. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs. The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more. With a standard size of 110 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference. Additionally, we provide the following options: - `jina-embedding-s-en-v1`: 35 million parameters. - `jina-embedding-l-en-v1`: 800 million parameters. - `jina-embedding-xl-en-v1`: 3 billion parameters (soon). - `jina-embedding-xxl-en-v1`: 11 billion parameters (soon). ## Data & Parameters More info will be released together with the technique report. ## Metrics We compared the model against `all-minilm-l6-v2` from sbert and `text-embeddings-ada-002` from OpenAI: |Name|param |context| |------------------------------|-----|------| |all-minilm-l6-v2|33m |128| |all-mpnet--base-v2 |110m |128| |ada-embedding-002|Unknown/API based |8192| |jina-embedding-s-en-v1|35m |512| |jina-embedding-b-en-v1|110m |512| |Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact| |------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----| |all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 | |all-mpnet--base-v2|0.726|0.835|0.78 |0.857|0.8 |0.906|0.513 |0.875|0.656 | |ada-embedding-002|0.698|0.833|0.761|0.861|0.86 |0.903|0.685 |0.876|0.726 | |jina-embedding-s-en-v1|0.738|0.781|0.732|0.833|0.785|0.859|0.471 |0.852|0.567 | |jina-embedding-b-en-v1|0.736|0.804|0.745|0.844|0.793|0.873|0.481 |0.87|0.616 | For more tasks and metrics, please checkout [MTEB](https://huggingface.co/spaces/mteb/leaderboard) benchmark. ## Usage [WIP] ```python !pip install finetuner[text] import finetuner model = finetuner.get_model('jinaai/jina-embedding-b-en-v1') embeddings = model.encode(['sentence 1', 'sentence 2']) ``` ## Fine-tuning [WIP] Please consider [Finetuner](https://github.com/jina-ai/finetuner).