File size: 4,930 Bytes
c56d57f
be90834
 
 
 
 
 
 
 
 
c56d57f
 
be90834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5e2e2
be90834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85cc185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be90834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
pipeline_tag: sentence-similarity
tags:
  - finetuner
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
datasets:
  - jinaai/negation-dataset
language: en
license: apache-2.0
---

<br><br>

<p align="center">
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>The text embedding set trained by Jina AI, Finetuner team.</b>
</p>


## Intented Usage & Model Info

`jina-embedding-t-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset.
This dataset consists of 380 million pairs of sentences, which include both query-document pairs.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.

The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.

With a compact size of just 14 million parameters,
the model enables lightning-fast inference while still delivering impressive performance.
Additionally, we provide the following options:

- `jina-embedding-t-en-v1`: 14 million parameters **(you are here)**.
- `jina-embedding-s-en-v1`: 35 million parameters.
- `jina-embedding-b-en-v1`: 110 million parameters.
- `jina-embedding-l-en-v1`: 330 million parameters.
- `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10* bert-base size (soon).
- `jina-embedding-6b-en-v1`: 6 billion parameters 30* bert-base size(soon).

## Data & Parameters

More info will be released together with the technique report.

## Metrics

We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:

|Name|param    |dimension|
|------------------------------|-----|------|
|all-minilm-l6-v2|23m      |384|
|all-mpnet-base-v2 |110m     |768|
|ada-embedding-002|Unknown/OpenAI API  |8192|
|jina-embedding-t-en-v1|14m      |312|
|jina-embedding-s-en-v1|35m      |512|
|jina-embedding-b-en-v1|110m      |768|
|jina-embedding-l-en-v1|330m      |1024|


|Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----|
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473   |0.876|0.645  |
|all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8  |**0.906**|0.513   |0.875|0.656  |
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685**   |0.876|**0.726**  |
|jina-embedding-t-en-v1|0.714|0.775|0.723|0.825|0.771|0.863|0.479   |0.841|0.542  |
|jina-embedding-s-en-v1|**0.743**|0.786|0.738|0.837|0.80|0.875|0.523   |0.857|0.524  |
|jina-embedding-b-en-v1|0.735|0.792|0.752|0.851|0.801|0.89|0.546   |0.871|0.586  |
|jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.821|0.896|0.566   |**0.882**|0.608  |

## Inference Speed

We encoded a single sentence `What is the current weather like today?` 10k times on:

1. cpu: MacBook Pro 2020, 2 GHz Quad-Core Intel Core i5
2. gpu: 1 Nvidia 3090

And recorded time spent to demonstrate the embedding speed:

|Name|param    |dimension| time@cpu | time@gpu |
|------------------------------|-----|------|-----|-----|
|jina-embedding-t-en-v1|14m      |312| 5.78s | |
|all-minilm-l6-v2|23m      |384| 11.95s | |
|jina-embedding-s-en-v1|35m      |512| 17.25s | |


## Usage

Use with Jina AI Finetuner

```python
!pip install finetuner
import finetuner

model = finetuner.build_model('jinaai/jina-embedding-t-en-v1')
embeddings = finetuner.encode(
    model=model,
    data=['how is the weather today', 'What is the current weather like today?']
)
print(finetuner.cos_sim(embeddings[0], embeddings[1]))
```

Use directly with sentence-transformers:

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = ['how is the weather today', 'What is the current weather like today?']

model = SentenceTransformer('jinaai/jina-embedding-t-en-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```

## Fine-tuning

Please consider [Finetuner](https://github.com/jina-ai/finetuner).

## Plans

1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`.

## Contact

Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.