File size: 5,755 Bytes
c56d57f be90834 c56d57f be90834 c6b8337 be90834 7b3c4a6 be90834 7b3c4a6 be90834 7dd7ceb 5348f72 f6c51ce be90834 edfa4c0 be90834 1a5e2e2 be90834 7b8a1f9 be90834 85cc185 dc9b472 85cc185 c508578 85cc185 be90834 af7a711 be90834 ddb6b04 12d7211 ddb6b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
pipeline_tag: sentence-similarity
tags:
- finetuner
- sentence-transformers
- feature-extraction
- sentence-similarity
datasets:
- jinaai/negation-dataset
language: en
license: apache-2.0
---
<br><br>
<p align="center">
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>
<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
</p>
## Intented Usage & Model Info
`jina-embedding-t-en-v1` is a tiny small language model that has been trained using Jina AI's Linnaeus-Clean dataset.
This dataset consists of 380 million pairs of sentences, which include both query-document pairs.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.
The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.
With a tiny small parameter size of just 14 million parameters,
the model enables lightning-fast inference on CPU, while still delivering impressive performance.
Additionally, we provide the following options:
- [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters **(you are here)**.
- [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters.
- [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters.
- [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters.
- `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon).
- `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon).
## Data & Parameters
Please checkout our [technical blog](https://arxiv.org/abs/2307.11224).
## Metrics
We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
|Name|param |dimension|
|------------------------------|-----|------|
|all-minilm-l6-v2|23m |384|
|all-mpnet-base-v2 |110m |768|
|ada-embedding-002|Unknown/OpenAI API |1536|
|jina-embedding-t-en-v1|14m |312|
|jina-embedding-s-en-v1|35m |512|
|jina-embedding-b-en-v1|110m |768|
|jina-embedding-l-en-v1|330m |1024|
|Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|
|------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----|
|all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |
|all-mpnet-base-v2|0.726|0.835|**0.78** |0.857|0.8 |**0.906**|0.513 |0.875|0.656 |
|ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** |
|jina-embedding-t-en-v1|0.714|0.775|0.723|0.825|0.771|0.863|0.479 |0.841|0.542 |
|jina-embedding-s-en-v1|**0.743**|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 |
|jina-embedding-b-en-v1|0.735|0.792|0.752|0.851|0.801|0.89|0.546 |0.871|0.586 |
|jina-embedding-l-en-v1|0.739|**0.844**|0.778|**0.863**|0.821|0.896|0.566 |**0.882**|0.608 |
## Inference Speed
We encoded a single sentence "What is the current weather like today?" 10k times on:
1. cpu: MacBook Pro 2020, 2 GHz Quad-Core Intel Core i5
2. gpu: 1 Nvidia 3090
And recorded time spent to demonstrate the embedding speed:
|Name|param |dimension| time@cpu | time@gpu |
|------------------------------|-----|------|-----|-----|
|jina-embedding-t-en-v1|14m |312| 5.78s | 2.36s|
|all-minilm-l6-v2|23m |384| 11.95s | 2.70s |
|jina-embedding-s-en-v1|35m |512| 17.25s | 2.81s |
## Usage
Use with Jina AI Finetuner
```python
!pip install finetuner
import finetuner
model = finetuner.build_model('jinaai/jina-embedding-t-en-v1')
embeddings = finetuner.encode(
model=model,
data=['how is the weather today', 'What is the current weather like today?']
)
print(finetuner.cos_sim(embeddings[0], embeddings[1]))
```
Use with sentence-transformers:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['how is the weather today', 'What is the current weather like today?']
model = SentenceTransformer('jinaai/jina-embedding-t-en-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```
## Fine-tuning
Please consider [Finetuner](https://github.com/jina-ai/finetuner).
## Plans
1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`.
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find Jina Embeddings useful in your research, please cite the following paper:
``` latex
@misc{günther2023jina,
title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models},
author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
year={2023},
eprint={2307.11224},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |