File size: 7,671 Bytes
0e973a2
 
d3cae21
 
 
 
a635bdb
 
d3cae21
 
 
 
 
0e973a2
d3cae21
0e973a2
 
 
d3cae21
0e973a2
 
 
 
d3cae21
0e973a2
 
d3cae21
 
4b7a270
d3cae21
0e973a2
 
 
9cf3ad7
ed0eb73
9cf3ad7
 
0e973a2
 
 
 
 
 
 
34339fb
0e973a2
 
 
d7aff03
d3cae21
 
 
a2b3a96
0e973a2
38ca931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e973a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05fa3e
d6dfd43
 
a05fa3e
0e973a2
a05fa3e
 
0e973a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05fa3e
 
 
d6dfd43
 
a05fa3e
 
15981ca
d6dfd43
0e973a2
 
 
 
 
 
a05fa3e
0e973a2
 
 
 
d6dfd43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48351a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e973a2
 
d7aff03
 
 
0e973a2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
  - transformers
  - transformers.js
datasets:
  - allenai/c4
language: en
inference: false
license: apache-2.0
---
<!-- TODO: add evaluation results here -->
<br><br>

<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>


<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>

## Quick Start

The easiest way to starting using `jina-embeddings-v2-base-code` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).


## Intended Usage & Model Info

`jina-embeddings-v2-base-code` is an multilingual **embedding model** speaks **English and 30 widely used programming languages**.
Same as other jina-embeddings-v2 series, it supports **8192** sequence length.

`jina-embeddings-v2-base-code` is based on a Bert architecture (JinaBert) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
The backbone `jina-bert-v2-base-code` is pretrained on the [github-code](https://huggingface.co/datasets/codeparrot/github-code) dataset.
The model is further trained on Jina AI's collection of more than 150 millions of coding question answer and docstring source code pairs.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.

The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi.
This makes our model useful for a range of use cases, especially when processing long documents is needed, including technical question answering and code search.

This model has 161 million parameters, which enables fast and memory efficient inference, while delivering impressive performance.
Additionally, we provide the following embedding models:

- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings.
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings.
- [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings (soon).
- [`jina-embeddings-v2-base-code`](https://huggingface.co/jinaai/jina-embeddings-v2-base-code): 161 million parameters code embeddings.

**<details><summary>Supported (Programming) Languages</summary>**
<p>

- English
- Assembly
- Batchfile
- C
- C#
- C++
- CMake
- CSS
- Dockerfile
- FORTRAN
- GO
- Haskell
- HTML
- Java
- JavaScript
- Julia
- Lua
- Makefile
- Markdown
- PHP
- Perl
- PowerShell
- Python
- Ruby
- Rust
- SQL
- Scala
- Shell
- TypeScript
- TeX
- Visual Basic
</p>
</details>

## Data & Parameters

Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923)

## Usage

**<details><summary>Please apply mean pooling when integrating the model.</summary>**
<p>

### Why mean pooling?

`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
It has been proved to be the most effective way to produce high-quality sentence embeddings.
We offer an `encode` function to deal with this.

However, if you would like to do it without using the default `encode` function:

```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

sentences = [
    'How do I access the index while iterating over a sequence with a for loop?',
    '# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n    print(idx, x)',
]

tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-code')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)

encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

with torch.no_grad():
    model_output = model(**encoded_input)

embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
```

</p>
</details>

You can use Jina Embedding models directly from transformers package:
```python
!pip install transformers
from transformers import AutoModel
from numpy.linalg import norm

cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)
embeddings = model.encode(
    [
        'How do I access the index while iterating over a sequence with a for loop?',
        '# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n    print(idx, x)',
    ]
)
print(cos_sim(embeddings[0], embeddings[1]))
>>> tensor([[0.7282]])
```

If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:

```python
embeddings = model.encode(
    ['Very long ... code'],
    max_length=2048
)
```

Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):

```python
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

model = SentenceTransformer(
    "jinaai/jina-embeddings-v2-base-code",
    trust_remote_code=True
)

# control your input sequence length up to 8192
model.max_seq_length = 1024

embeddings = model.encode([
    'How do I access the index while iterating over a sequence with a for loop?',
    '# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n    print(idx, x)',
])
print(cos_sim(embeddings[0], embeddings[1]))
```

You can also use the [Transformers.js](https://huggingface.co/docs/transformers.js) library to compute embeddings in JavaScript.
```js
// npm i @xenova/transformers
import { pipeline, cos_sim } from '@xenova/transformers';

const extractor = await pipeline('feature-extraction', 'jinaai/jina-embeddings-v2-base-code', {
    quantized: false, // Comment out this line to use the 8-bit quantized version
});

const texts = [
    'How do I access the index while iterating over a sequence with a for loop?',
    '# Use the built-in enumerator\nfor idx, x in enumerate(xs):\n    print(idx, x)',
]
const embeddings = await extractor(texts, { pooling: 'mean' });

const score = cos_sim(embeddings[0].data, embeddings[1].data);
console.log(score);
// 0.7281748759529421
```

## Plans

1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese.
2. Multimodal embedding models enable Multimodal RAG applications.
3. High-performt rerankers.

## Contact

Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.