alaeddine-13
commited on
Commit
·
2deeab9
1
Parent(s):
9c80cc1
README draft (#2)
Browse files- README draft (ae44071eda26b5d24701b41b51128eb6ffc9e5c3)
README.md
CHANGED
@@ -2,2607 +2,114 @@
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- finetuner
|
|
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
-
-
|
9 |
datasets:
|
10 |
-
-
|
11 |
language: en
|
12 |
license: apache-2.0
|
13 |
model-index:
|
14 |
-
- name: jina-embedding-s-en-v2
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
value: 11.863
|
116 |
-
- type: recall_at_1
|
117 |
-
value: 23.684
|
118 |
-
- type: recall_at_10
|
119 |
-
value: 77.027
|
120 |
-
- type: recall_at_100
|
121 |
-
value: 98.009
|
122 |
-
- type: recall_at_1000
|
123 |
-
value: 99.57300000000001
|
124 |
-
- type: recall_at_3
|
125 |
-
value: 48.577999999999996
|
126 |
-
- type: recall_at_5
|
127 |
-
value: 59.317
|
128 |
-
- task:
|
129 |
-
type: Clustering
|
130 |
-
dataset:
|
131 |
-
type: mteb/arxiv-clustering-p2p
|
132 |
-
name: MTEB ArxivClusteringP2P
|
133 |
-
config: default
|
134 |
-
split: test
|
135 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
136 |
-
metrics:
|
137 |
-
- type: v_measure
|
138 |
-
value: 44.249612940073035
|
139 |
-
- task:
|
140 |
-
type: Clustering
|
141 |
-
dataset:
|
142 |
-
type: mteb/arxiv-clustering-s2s
|
143 |
-
name: MTEB ArxivClusteringS2S
|
144 |
-
config: default
|
145 |
-
split: test
|
146 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
147 |
-
metrics:
|
148 |
-
- type: v_measure
|
149 |
-
value: 35.39423011105325
|
150 |
-
- task:
|
151 |
-
type: Reranking
|
152 |
-
dataset:
|
153 |
-
type: mteb/askubuntudupquestions-reranking
|
154 |
-
name: MTEB AskUbuntuDupQuestions
|
155 |
-
config: default
|
156 |
-
split: test
|
157 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
158 |
-
metrics:
|
159 |
-
- type: map
|
160 |
-
value: 59.89078304869791
|
161 |
-
- type: mrr
|
162 |
-
value: 73.5045948203843
|
163 |
-
- task:
|
164 |
-
type: STS
|
165 |
-
dataset:
|
166 |
-
type: mteb/biosses-sts
|
167 |
-
name: MTEB BIOSSES
|
168 |
-
config: default
|
169 |
-
split: test
|
170 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
171 |
-
metrics:
|
172 |
-
- type: cos_sim_pearson
|
173 |
-
value: 82.49373811125967
|
174 |
-
- type: cos_sim_spearman
|
175 |
-
value: 81.0446177409314
|
176 |
-
- type: euclidean_pearson
|
177 |
-
value: 82.1327844624042
|
178 |
-
- type: euclidean_spearman
|
179 |
-
value: 81.0446177409314
|
180 |
-
- type: manhattan_pearson
|
181 |
-
value: 81.88575541723692
|
182 |
-
- type: manhattan_spearman
|
183 |
-
value: 81.0705219456341
|
184 |
-
- task:
|
185 |
-
type: Classification
|
186 |
-
dataset:
|
187 |
-
type: mteb/banking77
|
188 |
-
name: MTEB Banking77Classification
|
189 |
-
config: default
|
190 |
-
split: test
|
191 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
192 |
-
metrics:
|
193 |
-
- type: accuracy
|
194 |
-
value: 78.27272727272728
|
195 |
-
- type: f1
|
196 |
-
value: 77.36583416688741
|
197 |
-
- task:
|
198 |
-
type: Clustering
|
199 |
-
dataset:
|
200 |
-
type: mteb/biorxiv-clustering-p2p
|
201 |
-
name: MTEB BiorxivClusteringP2P
|
202 |
-
config: default
|
203 |
-
split: test
|
204 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
205 |
-
metrics:
|
206 |
-
- type: v_measure
|
207 |
-
value: 36.12447585258704
|
208 |
-
- task:
|
209 |
-
type: Clustering
|
210 |
-
dataset:
|
211 |
-
type: mteb/biorxiv-clustering-s2s
|
212 |
-
name: MTEB BiorxivClusteringS2S
|
213 |
-
config: default
|
214 |
-
split: test
|
215 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
216 |
-
metrics:
|
217 |
-
- type: v_measure
|
218 |
-
value: 29.305990951348743
|
219 |
-
- task:
|
220 |
-
type: Retrieval
|
221 |
-
dataset:
|
222 |
-
type: BeIR/cqadupstack
|
223 |
-
name: MTEB CQADupstackAndroidRetrieval
|
224 |
-
config: default
|
225 |
-
split: test
|
226 |
-
revision: None
|
227 |
-
metrics:
|
228 |
-
- type: map_at_1
|
229 |
-
value: 31.458000000000002
|
230 |
-
- type: map_at_10
|
231 |
-
value: 42.132
|
232 |
-
- type: map_at_100
|
233 |
-
value: 43.47
|
234 |
-
- type: map_at_1000
|
235 |
-
value: 43.612
|
236 |
-
- type: map_at_3
|
237 |
-
value: 38.718
|
238 |
-
- type: map_at_5
|
239 |
-
value: 40.556
|
240 |
-
- type: mrr_at_1
|
241 |
-
value: 38.627
|
242 |
-
- type: mrr_at_10
|
243 |
-
value: 47.998000000000005
|
244 |
-
- type: mrr_at_100
|
245 |
-
value: 48.726
|
246 |
-
- type: mrr_at_1000
|
247 |
-
value: 48.778
|
248 |
-
- type: mrr_at_3
|
249 |
-
value: 45.255
|
250 |
-
- type: mrr_at_5
|
251 |
-
value: 46.893
|
252 |
-
- type: ndcg_at_1
|
253 |
-
value: 38.627
|
254 |
-
- type: ndcg_at_10
|
255 |
-
value: 48.229
|
256 |
-
- type: ndcg_at_100
|
257 |
-
value: 53.108999999999995
|
258 |
-
- type: ndcg_at_1000
|
259 |
-
value: 55.385
|
260 |
-
- type: ndcg_at_3
|
261 |
-
value: 43.191
|
262 |
-
- type: ndcg_at_5
|
263 |
-
value: 45.385999999999996
|
264 |
-
- type: precision_at_1
|
265 |
-
value: 38.627
|
266 |
-
- type: precision_at_10
|
267 |
-
value: 9.142
|
268 |
-
- type: precision_at_100
|
269 |
-
value: 1.462
|
270 |
-
- type: precision_at_1000
|
271 |
-
value: 0.19499999999999998
|
272 |
-
- type: precision_at_3
|
273 |
-
value: 20.552999999999997
|
274 |
-
- type: precision_at_5
|
275 |
-
value: 14.677999999999999
|
276 |
-
- type: recall_at_1
|
277 |
-
value: 31.458000000000002
|
278 |
-
- type: recall_at_10
|
279 |
-
value: 59.619
|
280 |
-
- type: recall_at_100
|
281 |
-
value: 79.953
|
282 |
-
- type: recall_at_1000
|
283 |
-
value: 94.921
|
284 |
-
- type: recall_at_3
|
285 |
-
value: 44.744
|
286 |
-
- type: recall_at_5
|
287 |
-
value: 51.010999999999996
|
288 |
-
- task:
|
289 |
-
type: Retrieval
|
290 |
-
dataset:
|
291 |
-
type: BeIR/cqadupstack
|
292 |
-
name: MTEB CQADupstackEnglishRetrieval
|
293 |
-
config: default
|
294 |
-
split: test
|
295 |
-
revision: None
|
296 |
-
metrics:
|
297 |
-
- type: map_at_1
|
298 |
-
value: 26.762000000000004
|
299 |
-
- type: map_at_10
|
300 |
-
value: 35.366
|
301 |
-
- type: map_at_100
|
302 |
-
value: 36.481
|
303 |
-
- type: map_at_1000
|
304 |
-
value: 36.614999999999995
|
305 |
-
- type: map_at_3
|
306 |
-
value: 33.071
|
307 |
-
- type: map_at_5
|
308 |
-
value: 34.495
|
309 |
-
- type: mrr_at_1
|
310 |
-
value: 33.312000000000005
|
311 |
-
- type: mrr_at_10
|
312 |
-
value: 40.841
|
313 |
-
- type: mrr_at_100
|
314 |
-
value: 41.54
|
315 |
-
- type: mrr_at_1000
|
316 |
-
value: 41.592
|
317 |
-
- type: mrr_at_3
|
318 |
-
value: 38.928000000000004
|
319 |
-
- type: mrr_at_5
|
320 |
-
value: 40.119
|
321 |
-
- type: ndcg_at_1
|
322 |
-
value: 33.312000000000005
|
323 |
-
- type: ndcg_at_10
|
324 |
-
value: 40.238
|
325 |
-
- type: ndcg_at_100
|
326 |
-
value: 44.647
|
327 |
-
- type: ndcg_at_1000
|
328 |
-
value: 47.010999999999996
|
329 |
-
- type: ndcg_at_3
|
330 |
-
value: 36.991
|
331 |
-
- type: ndcg_at_5
|
332 |
-
value: 38.721
|
333 |
-
- type: precision_at_1
|
334 |
-
value: 33.312000000000005
|
335 |
-
- type: precision_at_10
|
336 |
-
value: 7.4079999999999995
|
337 |
-
- type: precision_at_100
|
338 |
-
value: 1.253
|
339 |
-
- type: precision_at_1000
|
340 |
-
value: 0.17500000000000002
|
341 |
-
- type: precision_at_3
|
342 |
-
value: 17.898
|
343 |
-
- type: precision_at_5
|
344 |
-
value: 12.687999999999999
|
345 |
-
- type: recall_at_1
|
346 |
-
value: 26.762000000000004
|
347 |
-
- type: recall_at_10
|
348 |
-
value: 48.41
|
349 |
-
- type: recall_at_100
|
350 |
-
value: 67.523
|
351 |
-
- type: recall_at_1000
|
352 |
-
value: 82.91199999999999
|
353 |
-
- type: recall_at_3
|
354 |
-
value: 38.6
|
355 |
-
- type: recall_at_5
|
356 |
-
value: 43.477
|
357 |
-
- task:
|
358 |
-
type: Retrieval
|
359 |
-
dataset:
|
360 |
-
type: BeIR/cqadupstack
|
361 |
-
name: MTEB CQADupstackGamingRetrieval
|
362 |
-
config: default
|
363 |
-
split: test
|
364 |
-
revision: None
|
365 |
-
metrics:
|
366 |
-
- type: map_at_1
|
367 |
-
value: 37.578
|
368 |
-
- type: map_at_10
|
369 |
-
value: 49.415
|
370 |
-
- type: map_at_100
|
371 |
-
value: 50.339
|
372 |
-
- type: map_at_1000
|
373 |
-
value: 50.402
|
374 |
-
- type: map_at_3
|
375 |
-
value: 46.412
|
376 |
-
- type: map_at_5
|
377 |
-
value: 48.183
|
378 |
-
- type: mrr_at_1
|
379 |
-
value: 43.072
|
380 |
-
- type: mrr_at_10
|
381 |
-
value: 52.82599999999999
|
382 |
-
- type: mrr_at_100
|
383 |
-
value: 53.456
|
384 |
-
- type: mrr_at_1000
|
385 |
-
value: 53.493
|
386 |
-
- type: mrr_at_3
|
387 |
-
value: 50.407999999999994
|
388 |
-
- type: mrr_at_5
|
389 |
-
value: 51.922000000000004
|
390 |
-
- type: ndcg_at_1
|
391 |
-
value: 43.072
|
392 |
-
- type: ndcg_at_10
|
393 |
-
value: 54.949000000000005
|
394 |
-
- type: ndcg_at_100
|
395 |
-
value: 58.744
|
396 |
-
- type: ndcg_at_1000
|
397 |
-
value: 60.150000000000006
|
398 |
-
- type: ndcg_at_3
|
399 |
-
value: 49.864000000000004
|
400 |
-
- type: ndcg_at_5
|
401 |
-
value: 52.503
|
402 |
-
- type: precision_at_1
|
403 |
-
value: 43.072
|
404 |
-
- type: precision_at_10
|
405 |
-
value: 8.734
|
406 |
-
- type: precision_at_100
|
407 |
-
value: 1.1520000000000001
|
408 |
-
- type: precision_at_1000
|
409 |
-
value: 0.132
|
410 |
-
- type: precision_at_3
|
411 |
-
value: 22.131999999999998
|
412 |
-
- type: precision_at_5
|
413 |
-
value: 15.21
|
414 |
-
- type: recall_at_1
|
415 |
-
value: 37.578
|
416 |
-
- type: recall_at_10
|
417 |
-
value: 67.918
|
418 |
-
- type: recall_at_100
|
419 |
-
value: 84.373
|
420 |
-
- type: recall_at_1000
|
421 |
-
value: 94.529
|
422 |
-
- type: recall_at_3
|
423 |
-
value: 54.457
|
424 |
-
- type: recall_at_5
|
425 |
-
value: 60.941
|
426 |
-
- task:
|
427 |
-
type: Retrieval
|
428 |
-
dataset:
|
429 |
-
type: BeIR/cqadupstack
|
430 |
-
name: MTEB CQADupstackGisRetrieval
|
431 |
-
config: default
|
432 |
-
split: test
|
433 |
-
revision: None
|
434 |
-
metrics:
|
435 |
-
- type: map_at_1
|
436 |
-
value: 23.394000000000002
|
437 |
-
- type: map_at_10
|
438 |
-
value: 31.791000000000004
|
439 |
-
- type: map_at_100
|
440 |
-
value: 32.64
|
441 |
-
- type: map_at_1000
|
442 |
-
value: 32.727000000000004
|
443 |
-
- type: map_at_3
|
444 |
-
value: 29.557
|
445 |
-
- type: map_at_5
|
446 |
-
value: 30.858999999999998
|
447 |
-
- type: mrr_at_1
|
448 |
-
value: 25.085
|
449 |
-
- type: mrr_at_10
|
450 |
-
value: 33.721000000000004
|
451 |
-
- type: mrr_at_100
|
452 |
-
value: 34.492
|
453 |
-
- type: mrr_at_1000
|
454 |
-
value: 34.564
|
455 |
-
- type: mrr_at_3
|
456 |
-
value: 31.619999999999997
|
457 |
-
- type: mrr_at_5
|
458 |
-
value: 32.896
|
459 |
-
- type: ndcg_at_1
|
460 |
-
value: 25.085
|
461 |
-
- type: ndcg_at_10
|
462 |
-
value: 36.370000000000005
|
463 |
-
- type: ndcg_at_100
|
464 |
-
value: 40.96
|
465 |
-
- type: ndcg_at_1000
|
466 |
-
value: 43.171
|
467 |
-
- type: ndcg_at_3
|
468 |
-
value: 32.104
|
469 |
-
- type: ndcg_at_5
|
470 |
-
value: 34.300000000000004
|
471 |
-
- type: precision_at_1
|
472 |
-
value: 25.085
|
473 |
-
- type: precision_at_10
|
474 |
-
value: 5.537
|
475 |
-
- type: precision_at_100
|
476 |
-
value: 0.8340000000000001
|
477 |
-
- type: precision_at_1000
|
478 |
-
value: 0.105
|
479 |
-
- type: precision_at_3
|
480 |
-
value: 13.71
|
481 |
-
- type: precision_at_5
|
482 |
-
value: 9.514
|
483 |
-
- type: recall_at_1
|
484 |
-
value: 23.394000000000002
|
485 |
-
- type: recall_at_10
|
486 |
-
value: 48.549
|
487 |
-
- type: recall_at_100
|
488 |
-
value: 70.341
|
489 |
-
- type: recall_at_1000
|
490 |
-
value: 87.01299999999999
|
491 |
-
- type: recall_at_3
|
492 |
-
value: 36.947
|
493 |
-
- type: recall_at_5
|
494 |
-
value: 42.365
|
495 |
-
- task:
|
496 |
-
type: Retrieval
|
497 |
-
dataset:
|
498 |
-
type: BeIR/cqadupstack
|
499 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
500 |
-
config: default
|
501 |
-
split: test
|
502 |
-
revision: None
|
503 |
-
metrics:
|
504 |
-
- type: map_at_1
|
505 |
-
value: 14.818000000000001
|
506 |
-
- type: map_at_10
|
507 |
-
value: 21.773999999999997
|
508 |
-
- type: map_at_100
|
509 |
-
value: 22.787
|
510 |
-
- type: map_at_1000
|
511 |
-
value: 22.915
|
512 |
-
- type: map_at_3
|
513 |
-
value: 19.414
|
514 |
-
- type: map_at_5
|
515 |
-
value: 20.651
|
516 |
-
- type: mrr_at_1
|
517 |
-
value: 18.657
|
518 |
-
- type: mrr_at_10
|
519 |
-
value: 25.794
|
520 |
-
- type: mrr_at_100
|
521 |
-
value: 26.695999999999998
|
522 |
-
- type: mrr_at_1000
|
523 |
-
value: 26.776
|
524 |
-
- type: mrr_at_3
|
525 |
-
value: 23.279
|
526 |
-
- type: mrr_at_5
|
527 |
-
value: 24.598
|
528 |
-
- type: ndcg_at_1
|
529 |
-
value: 18.657
|
530 |
-
- type: ndcg_at_10
|
531 |
-
value: 26.511000000000003
|
532 |
-
- type: ndcg_at_100
|
533 |
-
value: 31.447999999999997
|
534 |
-
- type: ndcg_at_1000
|
535 |
-
value: 34.71
|
536 |
-
- type: ndcg_at_3
|
537 |
-
value: 21.92
|
538 |
-
- type: ndcg_at_5
|
539 |
-
value: 23.938000000000002
|
540 |
-
- type: precision_at_1
|
541 |
-
value: 18.657
|
542 |
-
- type: precision_at_10
|
543 |
-
value: 4.9
|
544 |
-
- type: precision_at_100
|
545 |
-
value: 0.851
|
546 |
-
- type: precision_at_1000
|
547 |
-
value: 0.127
|
548 |
-
- type: precision_at_3
|
549 |
-
value: 10.488999999999999
|
550 |
-
- type: precision_at_5
|
551 |
-
value: 7.710999999999999
|
552 |
-
- type: recall_at_1
|
553 |
-
value: 14.818000000000001
|
554 |
-
- type: recall_at_10
|
555 |
-
value: 37.408
|
556 |
-
- type: recall_at_100
|
557 |
-
value: 58.81999999999999
|
558 |
-
- type: recall_at_1000
|
559 |
-
value: 82.612
|
560 |
-
- type: recall_at_3
|
561 |
-
value: 24.561
|
562 |
-
- type: recall_at_5
|
563 |
-
value: 29.685
|
564 |
-
- task:
|
565 |
-
type: Retrieval
|
566 |
-
dataset:
|
567 |
-
type: BeIR/cqadupstack
|
568 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
569 |
-
config: default
|
570 |
-
split: test
|
571 |
-
revision: None
|
572 |
-
metrics:
|
573 |
-
- type: map_at_1
|
574 |
-
value: 26.332
|
575 |
-
- type: map_at_10
|
576 |
-
value: 35.366
|
577 |
-
- type: map_at_100
|
578 |
-
value: 36.569
|
579 |
-
- type: map_at_1000
|
580 |
-
value: 36.689
|
581 |
-
- type: map_at_3
|
582 |
-
value: 32.582
|
583 |
-
- type: map_at_5
|
584 |
-
value: 34.184
|
585 |
-
- type: mrr_at_1
|
586 |
-
value: 32.05
|
587 |
-
- type: mrr_at_10
|
588 |
-
value: 40.902
|
589 |
-
- type: mrr_at_100
|
590 |
-
value: 41.754000000000005
|
591 |
-
- type: mrr_at_1000
|
592 |
-
value: 41.811
|
593 |
-
- type: mrr_at_3
|
594 |
-
value: 38.547
|
595 |
-
- type: mrr_at_5
|
596 |
-
value: 40.019
|
597 |
-
- type: ndcg_at_1
|
598 |
-
value: 32.05
|
599 |
-
- type: ndcg_at_10
|
600 |
-
value: 40.999
|
601 |
-
- type: ndcg_at_100
|
602 |
-
value: 46.284
|
603 |
-
- type: ndcg_at_1000
|
604 |
-
value: 48.698
|
605 |
-
- type: ndcg_at_3
|
606 |
-
value: 36.39
|
607 |
-
- type: ndcg_at_5
|
608 |
-
value: 38.699
|
609 |
-
- type: precision_at_1
|
610 |
-
value: 32.05
|
611 |
-
- type: precision_at_10
|
612 |
-
value: 7.315
|
613 |
-
- type: precision_at_100
|
614 |
-
value: 1.172
|
615 |
-
- type: precision_at_1000
|
616 |
-
value: 0.156
|
617 |
-
- type: precision_at_3
|
618 |
-
value: 17.036
|
619 |
-
- type: precision_at_5
|
620 |
-
value: 12.089
|
621 |
-
- type: recall_at_1
|
622 |
-
value: 26.332
|
623 |
-
- type: recall_at_10
|
624 |
-
value: 52.410000000000004
|
625 |
-
- type: recall_at_100
|
626 |
-
value: 74.763
|
627 |
-
- type: recall_at_1000
|
628 |
-
value: 91.03
|
629 |
-
- type: recall_at_3
|
630 |
-
value: 39.527
|
631 |
-
- type: recall_at_5
|
632 |
-
value: 45.517
|
633 |
-
- task:
|
634 |
-
type: Retrieval
|
635 |
-
dataset:
|
636 |
-
type: BeIR/cqadupstack
|
637 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
638 |
-
config: default
|
639 |
-
split: test
|
640 |
-
revision: None
|
641 |
-
metrics:
|
642 |
-
- type: map_at_1
|
643 |
-
value: 22.849
|
644 |
-
- type: map_at_10
|
645 |
-
value: 31.502000000000002
|
646 |
-
- type: map_at_100
|
647 |
-
value: 32.854
|
648 |
-
- type: map_at_1000
|
649 |
-
value: 32.975
|
650 |
-
- type: map_at_3
|
651 |
-
value: 28.997
|
652 |
-
- type: map_at_5
|
653 |
-
value: 30.508999999999997
|
654 |
-
- type: mrr_at_1
|
655 |
-
value: 28.195999999999998
|
656 |
-
- type: mrr_at_10
|
657 |
-
value: 36.719
|
658 |
-
- type: mrr_at_100
|
659 |
-
value: 37.674
|
660 |
-
- type: mrr_at_1000
|
661 |
-
value: 37.743
|
662 |
-
- type: mrr_at_3
|
663 |
-
value: 34.532000000000004
|
664 |
-
- type: mrr_at_5
|
665 |
-
value: 35.845
|
666 |
-
- type: ndcg_at_1
|
667 |
-
value: 28.195999999999998
|
668 |
-
- type: ndcg_at_10
|
669 |
-
value: 36.605
|
670 |
-
- type: ndcg_at_100
|
671 |
-
value: 42.524
|
672 |
-
- type: ndcg_at_1000
|
673 |
-
value: 45.171
|
674 |
-
- type: ndcg_at_3
|
675 |
-
value: 32.574
|
676 |
-
- type: ndcg_at_5
|
677 |
-
value: 34.617
|
678 |
-
- type: precision_at_1
|
679 |
-
value: 28.195999999999998
|
680 |
-
- type: precision_at_10
|
681 |
-
value: 6.598
|
682 |
-
- type: precision_at_100
|
683 |
-
value: 1.121
|
684 |
-
- type: precision_at_1000
|
685 |
-
value: 0.153
|
686 |
-
- type: precision_at_3
|
687 |
-
value: 15.601
|
688 |
-
- type: precision_at_5
|
689 |
-
value: 11.073
|
690 |
-
- type: recall_at_1
|
691 |
-
value: 22.849
|
692 |
-
- type: recall_at_10
|
693 |
-
value: 46.528000000000006
|
694 |
-
- type: recall_at_100
|
695 |
-
value: 72.09
|
696 |
-
- type: recall_at_1000
|
697 |
-
value: 90.398
|
698 |
-
- type: recall_at_3
|
699 |
-
value: 35.116
|
700 |
-
- type: recall_at_5
|
701 |
-
value: 40.778
|
702 |
-
- task:
|
703 |
-
type: Retrieval
|
704 |
-
dataset:
|
705 |
-
type: BeIR/cqadupstack
|
706 |
-
name: MTEB CQADupstackRetrieval
|
707 |
-
config: default
|
708 |
-
split: test
|
709 |
-
revision: None
|
710 |
-
metrics:
|
711 |
-
- type: map_at_1
|
712 |
-
value: 24.319500000000005
|
713 |
-
- type: map_at_10
|
714 |
-
value: 32.530166666666666
|
715 |
-
- type: map_at_100
|
716 |
-
value: 33.61566666666667
|
717 |
-
- type: map_at_1000
|
718 |
-
value: 33.73808333333333
|
719 |
-
- type: map_at_3
|
720 |
-
value: 30.074583333333326
|
721 |
-
- type: map_at_5
|
722 |
-
value: 31.429666666666662
|
723 |
-
- type: mrr_at_1
|
724 |
-
value: 28.675916666666666
|
725 |
-
- type: mrr_at_10
|
726 |
-
value: 36.49308333333334
|
727 |
-
- type: mrr_at_100
|
728 |
-
value: 37.310583333333334
|
729 |
-
- type: mrr_at_1000
|
730 |
-
value: 37.37616666666666
|
731 |
-
- type: mrr_at_3
|
732 |
-
value: 34.283166666666666
|
733 |
-
- type: mrr_at_5
|
734 |
-
value: 35.54333333333334
|
735 |
-
- type: ndcg_at_1
|
736 |
-
value: 28.675916666666666
|
737 |
-
- type: ndcg_at_10
|
738 |
-
value: 37.403416666666665
|
739 |
-
- type: ndcg_at_100
|
740 |
-
value: 42.25783333333333
|
741 |
-
- type: ndcg_at_1000
|
742 |
-
value: 44.778333333333336
|
743 |
-
- type: ndcg_at_3
|
744 |
-
value: 33.17099999999999
|
745 |
-
- type: ndcg_at_5
|
746 |
-
value: 35.12666666666667
|
747 |
-
- type: precision_at_1
|
748 |
-
value: 28.675916666666666
|
749 |
-
- type: precision_at_10
|
750 |
-
value: 6.463083333333334
|
751 |
-
- type: precision_at_100
|
752 |
-
value: 1.0585
|
753 |
-
- type: precision_at_1000
|
754 |
-
value: 0.14633333333333332
|
755 |
-
- type: precision_at_3
|
756 |
-
value: 15.158999999999997
|
757 |
-
- type: precision_at_5
|
758 |
-
value: 10.673916666666667
|
759 |
-
- type: recall_at_1
|
760 |
-
value: 24.319500000000005
|
761 |
-
- type: recall_at_10
|
762 |
-
value: 47.9135
|
763 |
-
- type: recall_at_100
|
764 |
-
value: 69.40266666666666
|
765 |
-
- type: recall_at_1000
|
766 |
-
value: 87.12566666666666
|
767 |
-
- type: recall_at_3
|
768 |
-
value: 36.03149999999999
|
769 |
-
- type: recall_at_5
|
770 |
-
value: 41.12791666666668
|
771 |
-
- task:
|
772 |
-
type: Retrieval
|
773 |
-
dataset:
|
774 |
-
type: BeIR/cqadupstack
|
775 |
-
name: MTEB CQADupstackStatsRetrieval
|
776 |
-
config: default
|
777 |
-
split: test
|
778 |
-
revision: None
|
779 |
-
metrics:
|
780 |
-
- type: map_at_1
|
781 |
-
value: 22.997
|
782 |
-
- type: map_at_10
|
783 |
-
value: 28.754999999999995
|
784 |
-
- type: map_at_100
|
785 |
-
value: 29.555999999999997
|
786 |
-
- type: map_at_1000
|
787 |
-
value: 29.653000000000002
|
788 |
-
- type: map_at_3
|
789 |
-
value: 27.069
|
790 |
-
- type: map_at_5
|
791 |
-
value: 27.884999999999998
|
792 |
-
- type: mrr_at_1
|
793 |
-
value: 25.767
|
794 |
-
- type: mrr_at_10
|
795 |
-
value: 31.195
|
796 |
-
- type: mrr_at_100
|
797 |
-
value: 31.964
|
798 |
-
- type: mrr_at_1000
|
799 |
-
value: 32.039
|
800 |
-
- type: mrr_at_3
|
801 |
-
value: 29.601
|
802 |
-
- type: mrr_at_5
|
803 |
-
value: 30.345
|
804 |
-
- type: ndcg_at_1
|
805 |
-
value: 25.767
|
806 |
-
- type: ndcg_at_10
|
807 |
-
value: 32.234
|
808 |
-
- type: ndcg_at_100
|
809 |
-
value: 36.461
|
810 |
-
- type: ndcg_at_1000
|
811 |
-
value: 39.005
|
812 |
-
- type: ndcg_at_3
|
813 |
-
value: 29.052
|
814 |
-
- type: ndcg_at_5
|
815 |
-
value: 30.248
|
816 |
-
- type: precision_at_1
|
817 |
-
value: 25.767
|
818 |
-
- type: precision_at_10
|
819 |
-
value: 4.893
|
820 |
-
- type: precision_at_100
|
821 |
-
value: 0.761
|
822 |
-
- type: precision_at_1000
|
823 |
-
value: 0.105
|
824 |
-
- type: precision_at_3
|
825 |
-
value: 12.219
|
826 |
-
- type: precision_at_5
|
827 |
-
value: 8.19
|
828 |
-
- type: recall_at_1
|
829 |
-
value: 22.997
|
830 |
-
- type: recall_at_10
|
831 |
-
value: 40.652
|
832 |
-
- type: recall_at_100
|
833 |
-
value: 60.302
|
834 |
-
- type: recall_at_1000
|
835 |
-
value: 79.17999999999999
|
836 |
-
- type: recall_at_3
|
837 |
-
value: 31.680999999999997
|
838 |
-
- type: recall_at_5
|
839 |
-
value: 34.698
|
840 |
-
- task:
|
841 |
-
type: Retrieval
|
842 |
-
dataset:
|
843 |
-
type: BeIR/cqadupstack
|
844 |
-
name: MTEB CQADupstackTexRetrieval
|
845 |
-
config: default
|
846 |
-
split: test
|
847 |
-
revision: None
|
848 |
-
metrics:
|
849 |
-
- type: map_at_1
|
850 |
-
value: 16.3
|
851 |
-
- type: map_at_10
|
852 |
-
value: 22.581
|
853 |
-
- type: map_at_100
|
854 |
-
value: 23.517
|
855 |
-
- type: map_at_1000
|
856 |
-
value: 23.638
|
857 |
-
- type: map_at_3
|
858 |
-
value: 20.567
|
859 |
-
- type: map_at_5
|
860 |
-
value: 21.688
|
861 |
-
- type: mrr_at_1
|
862 |
-
value: 19.683
|
863 |
-
- type: mrr_at_10
|
864 |
-
value: 26.185000000000002
|
865 |
-
- type: mrr_at_100
|
866 |
-
value: 27.014
|
867 |
-
- type: mrr_at_1000
|
868 |
-
value: 27.092
|
869 |
-
- type: mrr_at_3
|
870 |
-
value: 24.145
|
871 |
-
- type: mrr_at_5
|
872 |
-
value: 25.308999999999997
|
873 |
-
- type: ndcg_at_1
|
874 |
-
value: 19.683
|
875 |
-
- type: ndcg_at_10
|
876 |
-
value: 26.699
|
877 |
-
- type: ndcg_at_100
|
878 |
-
value: 31.35
|
879 |
-
- type: ndcg_at_1000
|
880 |
-
value: 34.348
|
881 |
-
- type: ndcg_at_3
|
882 |
-
value: 23.026
|
883 |
-
- type: ndcg_at_5
|
884 |
-
value: 24.731
|
885 |
-
- type: precision_at_1
|
886 |
-
value: 19.683
|
887 |
-
- type: precision_at_10
|
888 |
-
value: 4.814
|
889 |
-
- type: precision_at_100
|
890 |
-
value: 0.836
|
891 |
-
- type: precision_at_1000
|
892 |
-
value: 0.126
|
893 |
-
- type: precision_at_3
|
894 |
-
value: 10.782
|
895 |
-
- type: precision_at_5
|
896 |
-
value: 7.825
|
897 |
-
- type: recall_at_1
|
898 |
-
value: 16.3
|
899 |
-
- type: recall_at_10
|
900 |
-
value: 35.521
|
901 |
-
- type: recall_at_100
|
902 |
-
value: 56.665
|
903 |
-
- type: recall_at_1000
|
904 |
-
value: 78.361
|
905 |
-
- type: recall_at_3
|
906 |
-
value: 25.223000000000003
|
907 |
-
- type: recall_at_5
|
908 |
-
value: 29.626
|
909 |
-
- task:
|
910 |
-
type: Retrieval
|
911 |
-
dataset:
|
912 |
-
type: BeIR/cqadupstack
|
913 |
-
name: MTEB CQADupstackUnixRetrieval
|
914 |
-
config: default
|
915 |
-
split: test
|
916 |
-
revision: None
|
917 |
-
metrics:
|
918 |
-
- type: map_at_1
|
919 |
-
value: 24.596999999999998
|
920 |
-
- type: map_at_10
|
921 |
-
value: 32.54
|
922 |
-
- type: map_at_100
|
923 |
-
value: 33.548
|
924 |
-
- type: map_at_1000
|
925 |
-
value: 33.661
|
926 |
-
- type: map_at_3
|
927 |
-
value: 30.134
|
928 |
-
- type: map_at_5
|
929 |
-
value: 31.468
|
930 |
-
- type: mrr_at_1
|
931 |
-
value: 28.825
|
932 |
-
- type: mrr_at_10
|
933 |
-
value: 36.495
|
934 |
-
- type: mrr_at_100
|
935 |
-
value: 37.329
|
936 |
-
- type: mrr_at_1000
|
937 |
-
value: 37.397999999999996
|
938 |
-
- type: mrr_at_3
|
939 |
-
value: 34.359
|
940 |
-
- type: mrr_at_5
|
941 |
-
value: 35.53
|
942 |
-
- type: ndcg_at_1
|
943 |
-
value: 28.825
|
944 |
-
- type: ndcg_at_10
|
945 |
-
value: 37.341
|
946 |
-
- type: ndcg_at_100
|
947 |
-
value: 42.221
|
948 |
-
- type: ndcg_at_1000
|
949 |
-
value: 44.799
|
950 |
-
- type: ndcg_at_3
|
951 |
-
value: 33.058
|
952 |
-
- type: ndcg_at_5
|
953 |
-
value: 34.961999999999996
|
954 |
-
- type: precision_at_1
|
955 |
-
value: 28.825
|
956 |
-
- type: precision_at_10
|
957 |
-
value: 6.175
|
958 |
-
- type: precision_at_100
|
959 |
-
value: 0.97
|
960 |
-
- type: precision_at_1000
|
961 |
-
value: 0.13
|
962 |
-
- type: precision_at_3
|
963 |
-
value: 14.924999999999999
|
964 |
-
- type: precision_at_5
|
965 |
-
value: 10.392
|
966 |
-
- type: recall_at_1
|
967 |
-
value: 24.596999999999998
|
968 |
-
- type: recall_at_10
|
969 |
-
value: 48.067
|
970 |
-
- type: recall_at_100
|
971 |
-
value: 69.736
|
972 |
-
- type: recall_at_1000
|
973 |
-
value: 87.855
|
974 |
-
- type: recall_at_3
|
975 |
-
value: 36.248999999999995
|
976 |
-
- type: recall_at_5
|
977 |
-
value: 41.086
|
978 |
-
- task:
|
979 |
-
type: Retrieval
|
980 |
-
dataset:
|
981 |
-
type: BeIR/cqadupstack
|
982 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
983 |
-
config: default
|
984 |
-
split: test
|
985 |
-
revision: None
|
986 |
-
metrics:
|
987 |
-
- type: map_at_1
|
988 |
-
value: 24.224999999999998
|
989 |
-
- type: map_at_10
|
990 |
-
value: 31.826
|
991 |
-
- type: map_at_100
|
992 |
-
value: 33.366
|
993 |
-
- type: map_at_1000
|
994 |
-
value: 33.6
|
995 |
-
- type: map_at_3
|
996 |
-
value: 29.353
|
997 |
-
- type: map_at_5
|
998 |
-
value: 30.736
|
999 |
-
- type: mrr_at_1
|
1000 |
-
value: 28.656
|
1001 |
-
- type: mrr_at_10
|
1002 |
-
value: 36.092
|
1003 |
-
- type: mrr_at_100
|
1004 |
-
value: 37.076
|
1005 |
-
- type: mrr_at_1000
|
1006 |
-
value: 37.141999999999996
|
1007 |
-
- type: mrr_at_3
|
1008 |
-
value: 33.86
|
1009 |
-
- type: mrr_at_5
|
1010 |
-
value: 35.144999999999996
|
1011 |
-
- type: ndcg_at_1
|
1012 |
-
value: 28.656
|
1013 |
-
- type: ndcg_at_10
|
1014 |
-
value: 37.025999999999996
|
1015 |
-
- type: ndcg_at_100
|
1016 |
-
value: 42.844
|
1017 |
-
- type: ndcg_at_1000
|
1018 |
-
value: 45.716
|
1019 |
-
- type: ndcg_at_3
|
1020 |
-
value: 32.98
|
1021 |
-
- type: ndcg_at_5
|
1022 |
-
value: 34.922
|
1023 |
-
- type: precision_at_1
|
1024 |
-
value: 28.656
|
1025 |
-
- type: precision_at_10
|
1026 |
-
value: 6.976
|
1027 |
-
- type: precision_at_100
|
1028 |
-
value: 1.48
|
1029 |
-
- type: precision_at_1000
|
1030 |
-
value: 0.23700000000000002
|
1031 |
-
- type: precision_at_3
|
1032 |
-
value: 15.348999999999998
|
1033 |
-
- type: precision_at_5
|
1034 |
-
value: 11.028
|
1035 |
-
- type: recall_at_1
|
1036 |
-
value: 24.224999999999998
|
1037 |
-
- type: recall_at_10
|
1038 |
-
value: 46.589999999999996
|
1039 |
-
- type: recall_at_100
|
1040 |
-
value: 72.331
|
1041 |
-
- type: recall_at_1000
|
1042 |
-
value: 90.891
|
1043 |
-
- type: recall_at_3
|
1044 |
-
value: 34.996
|
1045 |
-
- type: recall_at_5
|
1046 |
-
value: 40.294000000000004
|
1047 |
-
- task:
|
1048 |
-
type: Retrieval
|
1049 |
-
dataset:
|
1050 |
-
type: BeIR/cqadupstack
|
1051 |
-
name: MTEB CQADupstackWordpressRetrieval
|
1052 |
-
config: default
|
1053 |
-
split: test
|
1054 |
-
revision: None
|
1055 |
-
metrics:
|
1056 |
-
- type: map_at_1
|
1057 |
-
value: 20.524
|
1058 |
-
- type: map_at_10
|
1059 |
-
value: 27.314
|
1060 |
-
- type: map_at_100
|
1061 |
-
value: 28.260999999999996
|
1062 |
-
- type: map_at_1000
|
1063 |
-
value: 28.37
|
1064 |
-
- type: map_at_3
|
1065 |
-
value: 25.020999999999997
|
1066 |
-
- type: map_at_5
|
1067 |
-
value: 25.942
|
1068 |
-
- type: mrr_at_1
|
1069 |
-
value: 22.181
|
1070 |
-
- type: mrr_at_10
|
1071 |
-
value: 29.149
|
1072 |
-
- type: mrr_at_100
|
1073 |
-
value: 30.006
|
1074 |
-
- type: mrr_at_1000
|
1075 |
-
value: 30.086000000000002
|
1076 |
-
- type: mrr_at_3
|
1077 |
-
value: 26.863999999999997
|
1078 |
-
- type: mrr_at_5
|
1079 |
-
value: 27.899
|
1080 |
-
- type: ndcg_at_1
|
1081 |
-
value: 22.181
|
1082 |
-
- type: ndcg_at_10
|
1083 |
-
value: 31.64
|
1084 |
-
- type: ndcg_at_100
|
1085 |
-
value: 36.502
|
1086 |
-
- type: ndcg_at_1000
|
1087 |
-
value: 39.176
|
1088 |
-
- type: ndcg_at_3
|
1089 |
-
value: 26.901999999999997
|
1090 |
-
- type: ndcg_at_5
|
1091 |
-
value: 28.493000000000002
|
1092 |
-
- type: precision_at_1
|
1093 |
-
value: 22.181
|
1094 |
-
- type: precision_at_10
|
1095 |
-
value: 5.065
|
1096 |
-
- type: precision_at_100
|
1097 |
-
value: 0.8099999999999999
|
1098 |
-
- type: precision_at_1000
|
1099 |
-
value: 0.11499999999999999
|
1100 |
-
- type: precision_at_3
|
1101 |
-
value: 11.214
|
1102 |
-
- type: precision_at_5
|
1103 |
-
value: 7.689
|
1104 |
-
- type: recall_at_1
|
1105 |
-
value: 20.524
|
1106 |
-
- type: recall_at_10
|
1107 |
-
value: 43.29
|
1108 |
-
- type: recall_at_100
|
1109 |
-
value: 65.935
|
1110 |
-
- type: recall_at_1000
|
1111 |
-
value: 85.80600000000001
|
1112 |
-
- type: recall_at_3
|
1113 |
-
value: 30.276999999999997
|
1114 |
-
- type: recall_at_5
|
1115 |
-
value: 34.056999999999995
|
1116 |
-
- task:
|
1117 |
-
type: Retrieval
|
1118 |
-
dataset:
|
1119 |
-
type: climate-fever
|
1120 |
-
name: MTEB ClimateFEVER
|
1121 |
-
config: default
|
1122 |
-
split: test
|
1123 |
-
revision: None
|
1124 |
-
metrics:
|
1125 |
-
- type: map_at_1
|
1126 |
-
value: 10.488999999999999
|
1127 |
-
- type: map_at_10
|
1128 |
-
value: 17.98
|
1129 |
-
- type: map_at_100
|
1130 |
-
value: 19.581
|
1131 |
-
- type: map_at_1000
|
1132 |
-
value: 19.739
|
1133 |
-
- type: map_at_3
|
1134 |
-
value: 15.054
|
1135 |
-
- type: map_at_5
|
1136 |
-
value: 16.439999999999998
|
1137 |
-
- type: mrr_at_1
|
1138 |
-
value: 23.192
|
1139 |
-
- type: mrr_at_10
|
1140 |
-
value: 33.831
|
1141 |
-
- type: mrr_at_100
|
1142 |
-
value: 34.833
|
1143 |
-
- type: mrr_at_1000
|
1144 |
-
value: 34.881
|
1145 |
-
- type: mrr_at_3
|
1146 |
-
value: 30.793
|
1147 |
-
- type: mrr_at_5
|
1148 |
-
value: 32.535
|
1149 |
-
- type: ndcg_at_1
|
1150 |
-
value: 23.192
|
1151 |
-
- type: ndcg_at_10
|
1152 |
-
value: 25.446
|
1153 |
-
- type: ndcg_at_100
|
1154 |
-
value: 31.948
|
1155 |
-
- type: ndcg_at_1000
|
1156 |
-
value: 35.028
|
1157 |
-
- type: ndcg_at_3
|
1158 |
-
value: 20.744
|
1159 |
-
- type: ndcg_at_5
|
1160 |
-
value: 22.233
|
1161 |
-
- type: precision_at_1
|
1162 |
-
value: 23.192
|
1163 |
-
- type: precision_at_10
|
1164 |
-
value: 8.026
|
1165 |
-
- type: precision_at_100
|
1166 |
-
value: 1.482
|
1167 |
-
- type: precision_at_1000
|
1168 |
-
value: 0.20500000000000002
|
1169 |
-
- type: precision_at_3
|
1170 |
-
value: 15.548
|
1171 |
-
- type: precision_at_5
|
1172 |
-
value: 11.87
|
1173 |
-
- type: recall_at_1
|
1174 |
-
value: 10.488999999999999
|
1175 |
-
- type: recall_at_10
|
1176 |
-
value: 30.865
|
1177 |
-
- type: recall_at_100
|
1178 |
-
value: 53.428
|
1179 |
-
- type: recall_at_1000
|
1180 |
-
value: 70.89
|
1181 |
-
- type: recall_at_3
|
1182 |
-
value: 19.245
|
1183 |
-
- type: recall_at_5
|
1184 |
-
value: 23.657
|
1185 |
-
- task:
|
1186 |
-
type: Retrieval
|
1187 |
-
dataset:
|
1188 |
-
type: dbpedia-entity
|
1189 |
-
name: MTEB DBPedia
|
1190 |
-
config: default
|
1191 |
-
split: test
|
1192 |
-
revision: None
|
1193 |
-
metrics:
|
1194 |
-
- type: map_at_1
|
1195 |
-
value: 7.123
|
1196 |
-
- type: map_at_10
|
1197 |
-
value: 14.448
|
1198 |
-
- type: map_at_100
|
1199 |
-
value: 19.798
|
1200 |
-
- type: map_at_1000
|
1201 |
-
value: 21.082
|
1202 |
-
- type: map_at_3
|
1203 |
-
value: 10.815
|
1204 |
-
- type: map_at_5
|
1205 |
-
value: 12.422
|
1206 |
-
- type: mrr_at_1
|
1207 |
-
value: 53.5
|
1208 |
-
- type: mrr_at_10
|
1209 |
-
value: 63.117999999999995
|
1210 |
-
- type: mrr_at_100
|
1211 |
-
value: 63.617999999999995
|
1212 |
-
- type: mrr_at_1000
|
1213 |
-
value: 63.63799999999999
|
1214 |
-
- type: mrr_at_3
|
1215 |
-
value: 60.708
|
1216 |
-
- type: mrr_at_5
|
1217 |
-
value: 62.171
|
1218 |
-
- type: ndcg_at_1
|
1219 |
-
value: 42.125
|
1220 |
-
- type: ndcg_at_10
|
1221 |
-
value: 31.703
|
1222 |
-
- type: ndcg_at_100
|
1223 |
-
value: 35.935
|
1224 |
-
- type: ndcg_at_1000
|
1225 |
-
value: 43.173
|
1226 |
-
- type: ndcg_at_3
|
1227 |
-
value: 35.498000000000005
|
1228 |
-
- type: ndcg_at_5
|
1229 |
-
value: 33.645
|
1230 |
-
- type: precision_at_1
|
1231 |
-
value: 53.5
|
1232 |
-
- type: precision_at_10
|
1233 |
-
value: 25.025
|
1234 |
-
- type: precision_at_100
|
1235 |
-
value: 8.19
|
1236 |
-
- type: precision_at_1000
|
1237 |
-
value: 1.806
|
1238 |
-
- type: precision_at_3
|
1239 |
-
value: 39.083
|
1240 |
-
- type: precision_at_5
|
1241 |
-
value: 33.050000000000004
|
1242 |
-
- type: recall_at_1
|
1243 |
-
value: 7.123
|
1244 |
-
- type: recall_at_10
|
1245 |
-
value: 19.581
|
1246 |
-
- type: recall_at_100
|
1247 |
-
value: 42.061
|
1248 |
-
- type: recall_at_1000
|
1249 |
-
value: 65.879
|
1250 |
-
- type: recall_at_3
|
1251 |
-
value: 12.026
|
1252 |
-
- type: recall_at_5
|
1253 |
-
value: 14.846
|
1254 |
-
- task:
|
1255 |
-
type: Classification
|
1256 |
-
dataset:
|
1257 |
-
type: mteb/emotion
|
1258 |
-
name: MTEB EmotionClassification
|
1259 |
-
config: default
|
1260 |
-
split: test
|
1261 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1262 |
-
metrics:
|
1263 |
-
- type: accuracy
|
1264 |
-
value: 41.24
|
1265 |
-
- type: f1
|
1266 |
-
value: 36.76174115773002
|
1267 |
-
- task:
|
1268 |
-
type: Retrieval
|
1269 |
-
dataset:
|
1270 |
-
type: fever
|
1271 |
-
name: MTEB FEVER
|
1272 |
-
config: default
|
1273 |
-
split: test
|
1274 |
-
revision: None
|
1275 |
-
metrics:
|
1276 |
-
- type: map_at_1
|
1277 |
-
value: 47.821999999999996
|
1278 |
-
- type: map_at_10
|
1279 |
-
value: 59.794000000000004
|
1280 |
-
- type: map_at_100
|
1281 |
-
value: 60.316
|
1282 |
-
- type: map_at_1000
|
1283 |
-
value: 60.34
|
1284 |
-
- type: map_at_3
|
1285 |
-
value: 57.202
|
1286 |
-
- type: map_at_5
|
1287 |
-
value: 58.823
|
1288 |
-
- type: mrr_at_1
|
1289 |
-
value: 51.485
|
1290 |
-
- type: mrr_at_10
|
1291 |
-
value: 63.709
|
1292 |
-
- type: mrr_at_100
|
1293 |
-
value: 64.144
|
1294 |
-
- type: mrr_at_1000
|
1295 |
-
value: 64.158
|
1296 |
-
- type: mrr_at_3
|
1297 |
-
value: 61.251
|
1298 |
-
- type: mrr_at_5
|
1299 |
-
value: 62.818
|
1300 |
-
- type: ndcg_at_1
|
1301 |
-
value: 51.485
|
1302 |
-
- type: ndcg_at_10
|
1303 |
-
value: 66.097
|
1304 |
-
- type: ndcg_at_100
|
1305 |
-
value: 68.37
|
1306 |
-
- type: ndcg_at_1000
|
1307 |
-
value: 68.916
|
1308 |
-
- type: ndcg_at_3
|
1309 |
-
value: 61.12800000000001
|
1310 |
-
- type: ndcg_at_5
|
1311 |
-
value: 63.885000000000005
|
1312 |
-
- type: precision_at_1
|
1313 |
-
value: 51.485
|
1314 |
-
- type: precision_at_10
|
1315 |
-
value: 8.956999999999999
|
1316 |
-
- type: precision_at_100
|
1317 |
-
value: 1.02
|
1318 |
-
- type: precision_at_1000
|
1319 |
-
value: 0.108
|
1320 |
-
- type: precision_at_3
|
1321 |
-
value: 24.807000000000002
|
1322 |
-
- type: precision_at_5
|
1323 |
-
value: 16.387999999999998
|
1324 |
-
- type: recall_at_1
|
1325 |
-
value: 47.821999999999996
|
1326 |
-
- type: recall_at_10
|
1327 |
-
value: 81.773
|
1328 |
-
- type: recall_at_100
|
1329 |
-
value: 91.731
|
1330 |
-
- type: recall_at_1000
|
1331 |
-
value: 95.649
|
1332 |
-
- type: recall_at_3
|
1333 |
-
value: 68.349
|
1334 |
-
- type: recall_at_5
|
1335 |
-
value: 75.093
|
1336 |
-
- task:
|
1337 |
-
type: Retrieval
|
1338 |
-
dataset:
|
1339 |
-
type: fiqa
|
1340 |
-
name: MTEB FiQA2018
|
1341 |
-
config: default
|
1342 |
-
split: test
|
1343 |
-
revision: None
|
1344 |
-
metrics:
|
1345 |
-
- type: map_at_1
|
1346 |
-
value: 15.662999999999998
|
1347 |
-
- type: map_at_10
|
1348 |
-
value: 25.726
|
1349 |
-
- type: map_at_100
|
1350 |
-
value: 27.581
|
1351 |
-
- type: map_at_1000
|
1352 |
-
value: 27.772000000000002
|
1353 |
-
- type: map_at_3
|
1354 |
-
value: 21.859
|
1355 |
-
- type: map_at_5
|
1356 |
-
value: 24.058
|
1357 |
-
- type: mrr_at_1
|
1358 |
-
value: 30.247
|
1359 |
-
- type: mrr_at_10
|
1360 |
-
value: 39.581
|
1361 |
-
- type: mrr_at_100
|
1362 |
-
value: 40.594
|
1363 |
-
- type: mrr_at_1000
|
1364 |
-
value: 40.647
|
1365 |
-
- type: mrr_at_3
|
1366 |
-
value: 37.166
|
1367 |
-
- type: mrr_at_5
|
1368 |
-
value: 38.585
|
1369 |
-
- type: ndcg_at_1
|
1370 |
-
value: 30.247
|
1371 |
-
- type: ndcg_at_10
|
1372 |
-
value: 32.934999999999995
|
1373 |
-
- type: ndcg_at_100
|
1374 |
-
value: 40.062999999999995
|
1375 |
-
- type: ndcg_at_1000
|
1376 |
-
value: 43.492
|
1377 |
-
- type: ndcg_at_3
|
1378 |
-
value: 28.871000000000002
|
1379 |
-
- type: ndcg_at_5
|
1380 |
-
value: 30.492
|
1381 |
-
- type: precision_at_1
|
1382 |
-
value: 30.247
|
1383 |
-
- type: precision_at_10
|
1384 |
-
value: 9.522
|
1385 |
-
- type: precision_at_100
|
1386 |
-
value: 1.645
|
1387 |
-
- type: precision_at_1000
|
1388 |
-
value: 0.22499999999999998
|
1389 |
-
- type: precision_at_3
|
1390 |
-
value: 19.136
|
1391 |
-
- type: precision_at_5
|
1392 |
-
value: 14.753
|
1393 |
-
- type: recall_at_1
|
1394 |
-
value: 15.662999999999998
|
1395 |
-
- type: recall_at_10
|
1396 |
-
value: 39.595
|
1397 |
-
- type: recall_at_100
|
1398 |
-
value: 66.49199999999999
|
1399 |
-
- type: recall_at_1000
|
1400 |
-
value: 87.19
|
1401 |
-
- type: recall_at_3
|
1402 |
-
value: 26.346999999999998
|
1403 |
-
- type: recall_at_5
|
1404 |
-
value: 32.423
|
1405 |
-
- task:
|
1406 |
-
type: Retrieval
|
1407 |
-
dataset:
|
1408 |
-
type: hotpotqa
|
1409 |
-
name: MTEB HotpotQA
|
1410 |
-
config: default
|
1411 |
-
split: test
|
1412 |
-
revision: None
|
1413 |
-
metrics:
|
1414 |
-
- type: map_at_1
|
1415 |
-
value: 30.176
|
1416 |
-
- type: map_at_10
|
1417 |
-
value: 42.684
|
1418 |
-
- type: map_at_100
|
1419 |
-
value: 43.582
|
1420 |
-
- type: map_at_1000
|
1421 |
-
value: 43.668
|
1422 |
-
- type: map_at_3
|
1423 |
-
value: 39.964
|
1424 |
-
- type: map_at_5
|
1425 |
-
value: 41.589
|
1426 |
-
- type: mrr_at_1
|
1427 |
-
value: 60.351
|
1428 |
-
- type: mrr_at_10
|
1429 |
-
value: 67.669
|
1430 |
-
- type: mrr_at_100
|
1431 |
-
value: 68.089
|
1432 |
-
- type: mrr_at_1000
|
1433 |
-
value: 68.111
|
1434 |
-
- type: mrr_at_3
|
1435 |
-
value: 66.144
|
1436 |
-
- type: mrr_at_5
|
1437 |
-
value: 67.125
|
1438 |
-
- type: ndcg_at_1
|
1439 |
-
value: 60.351
|
1440 |
-
- type: ndcg_at_10
|
1441 |
-
value: 51.602000000000004
|
1442 |
-
- type: ndcg_at_100
|
1443 |
-
value: 55.186
|
1444 |
-
- type: ndcg_at_1000
|
1445 |
-
value: 56.96
|
1446 |
-
- type: ndcg_at_3
|
1447 |
-
value: 47.251
|
1448 |
-
- type: ndcg_at_5
|
1449 |
-
value: 49.584
|
1450 |
-
- type: precision_at_1
|
1451 |
-
value: 60.351
|
1452 |
-
- type: precision_at_10
|
1453 |
-
value: 10.804
|
1454 |
-
- type: precision_at_100
|
1455 |
-
value: 1.3639999999999999
|
1456 |
-
- type: precision_at_1000
|
1457 |
-
value: 0.16
|
1458 |
-
- type: precision_at_3
|
1459 |
-
value: 29.561
|
1460 |
-
- type: precision_at_5
|
1461 |
-
value: 19.581
|
1462 |
-
- type: recall_at_1
|
1463 |
-
value: 30.176
|
1464 |
-
- type: recall_at_10
|
1465 |
-
value: 54.018
|
1466 |
-
- type: recall_at_100
|
1467 |
-
value: 68.22399999999999
|
1468 |
-
- type: recall_at_1000
|
1469 |
-
value: 79.97999999999999
|
1470 |
-
- type: recall_at_3
|
1471 |
-
value: 44.342
|
1472 |
-
- type: recall_at_5
|
1473 |
-
value: 48.953
|
1474 |
-
- task:
|
1475 |
-
type: Classification
|
1476 |
-
dataset:
|
1477 |
-
type: mteb/imdb
|
1478 |
-
name: MTEB ImdbClassification
|
1479 |
-
config: default
|
1480 |
-
split: test
|
1481 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1482 |
-
metrics:
|
1483 |
-
- type: accuracy
|
1484 |
-
value: 71.28320000000001
|
1485 |
-
- type: ap
|
1486 |
-
value: 65.20730065157146
|
1487 |
-
- type: f1
|
1488 |
-
value: 71.19193683354304
|
1489 |
-
- task:
|
1490 |
-
type: Retrieval
|
1491 |
-
dataset:
|
1492 |
-
type: msmarco
|
1493 |
-
name: MTEB MSMARCO
|
1494 |
-
config: default
|
1495 |
-
split: dev
|
1496 |
-
revision: None
|
1497 |
-
metrics:
|
1498 |
-
- type: map_at_1
|
1499 |
-
value: 19.686
|
1500 |
-
- type: map_at_10
|
1501 |
-
value: 31.189
|
1502 |
-
- type: map_at_100
|
1503 |
-
value: 32.368
|
1504 |
-
- type: map_at_1000
|
1505 |
-
value: 32.43
|
1506 |
-
- type: map_at_3
|
1507 |
-
value: 27.577
|
1508 |
-
- type: map_at_5
|
1509 |
-
value: 29.603
|
1510 |
-
- type: mrr_at_1
|
1511 |
-
value: 20.201
|
1512 |
-
- type: mrr_at_10
|
1513 |
-
value: 31.762
|
1514 |
-
- type: mrr_at_100
|
1515 |
-
value: 32.882
|
1516 |
-
- type: mrr_at_1000
|
1517 |
-
value: 32.937
|
1518 |
-
- type: mrr_at_3
|
1519 |
-
value: 28.177999999999997
|
1520 |
-
- type: mrr_at_5
|
1521 |
-
value: 30.212
|
1522 |
-
- type: ndcg_at_1
|
1523 |
-
value: 20.215
|
1524 |
-
- type: ndcg_at_10
|
1525 |
-
value: 37.730999999999995
|
1526 |
-
- type: ndcg_at_100
|
1527 |
-
value: 43.501
|
1528 |
-
- type: ndcg_at_1000
|
1529 |
-
value: 45.031
|
1530 |
-
- type: ndcg_at_3
|
1531 |
-
value: 30.336000000000002
|
1532 |
-
- type: ndcg_at_5
|
1533 |
-
value: 33.961000000000006
|
1534 |
-
- type: precision_at_1
|
1535 |
-
value: 20.215
|
1536 |
-
- type: precision_at_10
|
1537 |
-
value: 6.036
|
1538 |
-
- type: precision_at_100
|
1539 |
-
value: 0.895
|
1540 |
-
- type: precision_at_1000
|
1541 |
-
value: 0.10300000000000001
|
1542 |
-
- type: precision_at_3
|
1543 |
-
value: 13.028
|
1544 |
-
- type: precision_at_5
|
1545 |
-
value: 9.633
|
1546 |
-
- type: recall_at_1
|
1547 |
-
value: 19.686
|
1548 |
-
- type: recall_at_10
|
1549 |
-
value: 57.867999999999995
|
1550 |
-
- type: recall_at_100
|
1551 |
-
value: 84.758
|
1552 |
-
- type: recall_at_1000
|
1553 |
-
value: 96.44500000000001
|
1554 |
-
- type: recall_at_3
|
1555 |
-
value: 37.726
|
1556 |
-
- type: recall_at_5
|
1557 |
-
value: 46.415
|
1558 |
-
- task:
|
1559 |
-
type: Classification
|
1560 |
-
dataset:
|
1561 |
-
type: mteb/mtop_domain
|
1562 |
-
name: MTEB MTOPDomainClassification (en)
|
1563 |
-
config: en
|
1564 |
-
split: test
|
1565 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1566 |
-
metrics:
|
1567 |
-
- type: accuracy
|
1568 |
-
value: 89.76972184222525
|
1569 |
-
- type: f1
|
1570 |
-
value: 89.11949030406099
|
1571 |
-
- task:
|
1572 |
-
type: Classification
|
1573 |
-
dataset:
|
1574 |
-
type: mteb/mtop_intent
|
1575 |
-
name: MTEB MTOPIntentClassification (en)
|
1576 |
-
config: en
|
1577 |
-
split: test
|
1578 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1579 |
-
metrics:
|
1580 |
-
- type: accuracy
|
1581 |
-
value: 55.57455540355677
|
1582 |
-
- type: f1
|
1583 |
-
value: 39.344920096224506
|
1584 |
-
- task:
|
1585 |
-
type: Classification
|
1586 |
-
dataset:
|
1587 |
-
type: mteb/amazon_massive_intent
|
1588 |
-
name: MTEB MassiveIntentClassification (en)
|
1589 |
-
config: en
|
1590 |
-
split: test
|
1591 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1592 |
-
metrics:
|
1593 |
-
- type: accuracy
|
1594 |
-
value: 63.772696704774724
|
1595 |
-
- type: f1
|
1596 |
-
value: 60.70041499812703
|
1597 |
-
- task:
|
1598 |
-
type: Classification
|
1599 |
-
dataset:
|
1600 |
-
type: mteb/amazon_massive_scenario
|
1601 |
-
name: MTEB MassiveScenarioClassification (en)
|
1602 |
-
config: en
|
1603 |
-
split: test
|
1604 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1605 |
-
metrics:
|
1606 |
-
- type: accuracy
|
1607 |
-
value: 69.16274377942166
|
1608 |
-
- type: f1
|
1609 |
-
value: 68.06744012208019
|
1610 |
-
- task:
|
1611 |
-
type: Clustering
|
1612 |
-
dataset:
|
1613 |
-
type: mteb/medrxiv-clustering-p2p
|
1614 |
-
name: MTEB MedrxivClusteringP2P
|
1615 |
-
config: default
|
1616 |
-
split: test
|
1617 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1618 |
-
metrics:
|
1619 |
-
- type: v_measure
|
1620 |
-
value: 31.822626760555522
|
1621 |
-
- task:
|
1622 |
-
type: Clustering
|
1623 |
-
dataset:
|
1624 |
-
type: mteb/medrxiv-clustering-s2s
|
1625 |
-
name: MTEB MedrxivClusteringS2S
|
1626 |
-
config: default
|
1627 |
-
split: test
|
1628 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1629 |
-
metrics:
|
1630 |
-
- type: v_measure
|
1631 |
-
value: 27.98469036402807
|
1632 |
-
- task:
|
1633 |
-
type: Reranking
|
1634 |
-
dataset:
|
1635 |
-
type: mteb/mind_small
|
1636 |
-
name: MTEB MindSmallReranking
|
1637 |
-
config: default
|
1638 |
-
split: test
|
1639 |
-
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1640 |
-
metrics:
|
1641 |
-
- type: map
|
1642 |
-
value: 30.911144124209166
|
1643 |
-
- type: mrr
|
1644 |
-
value: 31.950116175672292
|
1645 |
-
- task:
|
1646 |
-
type: Retrieval
|
1647 |
-
dataset:
|
1648 |
-
type: nfcorpus
|
1649 |
-
name: MTEB NFCorpus
|
1650 |
-
config: default
|
1651 |
-
split: test
|
1652 |
-
revision: None
|
1653 |
-
metrics:
|
1654 |
-
- type: map_at_1
|
1655 |
-
value: 5.157
|
1656 |
-
- type: map_at_10
|
1657 |
-
value: 11.086
|
1658 |
-
- type: map_at_100
|
1659 |
-
value: 13.927
|
1660 |
-
- type: map_at_1000
|
1661 |
-
value: 15.226999999999999
|
1662 |
-
- type: map_at_3
|
1663 |
-
value: 8.525
|
1664 |
-
- type: map_at_5
|
1665 |
-
value: 9.767000000000001
|
1666 |
-
- type: mrr_at_1
|
1667 |
-
value: 43.344
|
1668 |
-
- type: mrr_at_10
|
1669 |
-
value: 51.646
|
1670 |
-
- type: mrr_at_100
|
1671 |
-
value: 52.212
|
1672 |
-
- type: mrr_at_1000
|
1673 |
-
value: 52.263999999999996
|
1674 |
-
- type: mrr_at_3
|
1675 |
-
value: 50.052
|
1676 |
-
- type: mrr_at_5
|
1677 |
-
value: 51.166
|
1678 |
-
- type: ndcg_at_1
|
1679 |
-
value: 41.949999999999996
|
1680 |
-
- type: ndcg_at_10
|
1681 |
-
value: 30.552
|
1682 |
-
- type: ndcg_at_100
|
1683 |
-
value: 28.409000000000002
|
1684 |
-
- type: ndcg_at_1000
|
1685 |
-
value: 37.328
|
1686 |
-
- type: ndcg_at_3
|
1687 |
-
value: 37.114000000000004
|
1688 |
-
- type: ndcg_at_5
|
1689 |
-
value: 34.117999999999995
|
1690 |
-
- type: precision_at_1
|
1691 |
-
value: 43.344
|
1692 |
-
- type: precision_at_10
|
1693 |
-
value: 22.198
|
1694 |
-
- type: precision_at_100
|
1695 |
-
value: 7.234999999999999
|
1696 |
-
- type: precision_at_1000
|
1697 |
-
value: 2.013
|
1698 |
-
- type: precision_at_3
|
1699 |
-
value: 34.675
|
1700 |
-
- type: precision_at_5
|
1701 |
-
value: 29.04
|
1702 |
-
- type: recall_at_1
|
1703 |
-
value: 5.157
|
1704 |
-
- type: recall_at_10
|
1705 |
-
value: 13.999
|
1706 |
-
- type: recall_at_100
|
1707 |
-
value: 28.796
|
1708 |
-
- type: recall_at_1000
|
1709 |
-
value: 60.84
|
1710 |
-
- type: recall_at_3
|
1711 |
-
value: 9.603
|
1712 |
-
- type: recall_at_5
|
1713 |
-
value: 11.638
|
1714 |
-
- task:
|
1715 |
-
type: Retrieval
|
1716 |
-
dataset:
|
1717 |
-
type: nq
|
1718 |
-
name: MTEB NQ
|
1719 |
-
config: default
|
1720 |
-
split: test
|
1721 |
-
revision: None
|
1722 |
-
metrics:
|
1723 |
-
- type: map_at_1
|
1724 |
-
value: 33.024
|
1725 |
-
- type: map_at_10
|
1726 |
-
value: 47.229
|
1727 |
-
- type: map_at_100
|
1728 |
-
value: 48.195
|
1729 |
-
- type: map_at_1000
|
1730 |
-
value: 48.229
|
1731 |
-
- type: map_at_3
|
1732 |
-
value: 43.356
|
1733 |
-
- type: map_at_5
|
1734 |
-
value: 45.857
|
1735 |
-
- type: mrr_at_1
|
1736 |
-
value: 36.848
|
1737 |
-
- type: mrr_at_10
|
1738 |
-
value: 49.801
|
1739 |
-
- type: mrr_at_100
|
1740 |
-
value: 50.532999999999994
|
1741 |
-
- type: mrr_at_1000
|
1742 |
-
value: 50.556
|
1743 |
-
- type: mrr_at_3
|
1744 |
-
value: 46.605999999999995
|
1745 |
-
- type: mrr_at_5
|
1746 |
-
value: 48.735
|
1747 |
-
- type: ndcg_at_1
|
1748 |
-
value: 36.848
|
1749 |
-
- type: ndcg_at_10
|
1750 |
-
value: 54.202
|
1751 |
-
- type: ndcg_at_100
|
1752 |
-
value: 58.436
|
1753 |
-
- type: ndcg_at_1000
|
1754 |
-
value: 59.252
|
1755 |
-
- type: ndcg_at_3
|
1756 |
-
value: 47.082
|
1757 |
-
- type: ndcg_at_5
|
1758 |
-
value: 51.254
|
1759 |
-
- type: precision_at_1
|
1760 |
-
value: 36.848
|
1761 |
-
- type: precision_at_10
|
1762 |
-
value: 8.636000000000001
|
1763 |
-
- type: precision_at_100
|
1764 |
-
value: 1.105
|
1765 |
-
- type: precision_at_1000
|
1766 |
-
value: 0.11800000000000001
|
1767 |
-
- type: precision_at_3
|
1768 |
-
value: 21.08
|
1769 |
-
- type: precision_at_5
|
1770 |
-
value: 15.07
|
1771 |
-
- type: recall_at_1
|
1772 |
-
value: 33.024
|
1773 |
-
- type: recall_at_10
|
1774 |
-
value: 72.699
|
1775 |
-
- type: recall_at_100
|
1776 |
-
value: 91.387
|
1777 |
-
- type: recall_at_1000
|
1778 |
-
value: 97.482
|
1779 |
-
- type: recall_at_3
|
1780 |
-
value: 54.604
|
1781 |
-
- type: recall_at_5
|
1782 |
-
value: 64.224
|
1783 |
-
- task:
|
1784 |
-
type: Retrieval
|
1785 |
-
dataset:
|
1786 |
-
type: quora
|
1787 |
-
name: MTEB QuoraRetrieval
|
1788 |
-
config: default
|
1789 |
-
split: test
|
1790 |
-
revision: None
|
1791 |
-
metrics:
|
1792 |
-
- type: map_at_1
|
1793 |
-
value: 69.742
|
1794 |
-
- type: map_at_10
|
1795 |
-
value: 83.43
|
1796 |
-
- type: map_at_100
|
1797 |
-
value: 84.09400000000001
|
1798 |
-
- type: map_at_1000
|
1799 |
-
value: 84.113
|
1800 |
-
- type: map_at_3
|
1801 |
-
value: 80.464
|
1802 |
-
- type: map_at_5
|
1803 |
-
value: 82.356
|
1804 |
-
- type: mrr_at_1
|
1805 |
-
value: 80.31
|
1806 |
-
- type: mrr_at_10
|
1807 |
-
value: 86.629
|
1808 |
-
- type: mrr_at_100
|
1809 |
-
value: 86.753
|
1810 |
-
- type: mrr_at_1000
|
1811 |
-
value: 86.75399999999999
|
1812 |
-
- type: mrr_at_3
|
1813 |
-
value: 85.59
|
1814 |
-
- type: mrr_at_5
|
1815 |
-
value: 86.346
|
1816 |
-
- type: ndcg_at_1
|
1817 |
-
value: 80.28999999999999
|
1818 |
-
- type: ndcg_at_10
|
1819 |
-
value: 87.323
|
1820 |
-
- type: ndcg_at_100
|
1821 |
-
value: 88.682
|
1822 |
-
- type: ndcg_at_1000
|
1823 |
-
value: 88.812
|
1824 |
-
- type: ndcg_at_3
|
1825 |
-
value: 84.373
|
1826 |
-
- type: ndcg_at_5
|
1827 |
-
value: 86.065
|
1828 |
-
- type: precision_at_1
|
1829 |
-
value: 80.28999999999999
|
1830 |
-
- type: precision_at_10
|
1831 |
-
value: 13.239999999999998
|
1832 |
-
- type: precision_at_100
|
1833 |
-
value: 1.521
|
1834 |
-
- type: precision_at_1000
|
1835 |
-
value: 0.156
|
1836 |
-
- type: precision_at_3
|
1837 |
-
value: 36.827
|
1838 |
-
- type: precision_at_5
|
1839 |
-
value: 24.272
|
1840 |
-
- type: recall_at_1
|
1841 |
-
value: 69.742
|
1842 |
-
- type: recall_at_10
|
1843 |
-
value: 94.645
|
1844 |
-
- type: recall_at_100
|
1845 |
-
value: 99.375
|
1846 |
-
- type: recall_at_1000
|
1847 |
-
value: 99.97200000000001
|
1848 |
-
- type: recall_at_3
|
1849 |
-
value: 86.18400000000001
|
1850 |
-
- type: recall_at_5
|
1851 |
-
value: 90.958
|
1852 |
-
- task:
|
1853 |
-
type: Clustering
|
1854 |
-
dataset:
|
1855 |
-
type: mteb/reddit-clustering
|
1856 |
-
name: MTEB RedditClustering
|
1857 |
-
config: default
|
1858 |
-
split: test
|
1859 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1860 |
-
metrics:
|
1861 |
-
- type: v_measure
|
1862 |
-
value: 50.52987829115787
|
1863 |
-
- task:
|
1864 |
-
type: Clustering
|
1865 |
-
dataset:
|
1866 |
-
type: mteb/reddit-clustering-p2p
|
1867 |
-
name: MTEB RedditClusteringP2P
|
1868 |
-
config: default
|
1869 |
-
split: test
|
1870 |
-
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1871 |
-
metrics:
|
1872 |
-
- type: v_measure
|
1873 |
-
value: 56.73289360025561
|
1874 |
-
- task:
|
1875 |
-
type: Retrieval
|
1876 |
-
dataset:
|
1877 |
-
type: scidocs
|
1878 |
-
name: MTEB SCIDOCS
|
1879 |
-
config: default
|
1880 |
-
split: test
|
1881 |
-
revision: None
|
1882 |
-
metrics:
|
1883 |
-
- type: map_at_1
|
1884 |
-
value: 4.473
|
1885 |
-
- type: map_at_10
|
1886 |
-
value: 10.953
|
1887 |
-
- type: map_at_100
|
1888 |
-
value: 12.842
|
1889 |
-
- type: map_at_1000
|
1890 |
-
value: 13.122
|
1891 |
-
- type: map_at_3
|
1892 |
-
value: 7.863
|
1893 |
-
- type: map_at_5
|
1894 |
-
value: 9.376
|
1895 |
-
- type: mrr_at_1
|
1896 |
-
value: 22.0
|
1897 |
-
- type: mrr_at_10
|
1898 |
-
value: 32.639
|
1899 |
-
- type: mrr_at_100
|
1900 |
-
value: 33.658
|
1901 |
-
- type: mrr_at_1000
|
1902 |
-
value: 33.727000000000004
|
1903 |
-
- type: mrr_at_3
|
1904 |
-
value: 29.232999999999997
|
1905 |
-
- type: mrr_at_5
|
1906 |
-
value: 31.373
|
1907 |
-
- type: ndcg_at_1
|
1908 |
-
value: 22.0
|
1909 |
-
- type: ndcg_at_10
|
1910 |
-
value: 18.736
|
1911 |
-
- type: ndcg_at_100
|
1912 |
-
value: 26.209
|
1913 |
-
- type: ndcg_at_1000
|
1914 |
-
value: 31.427
|
1915 |
-
- type: ndcg_at_3
|
1916 |
-
value: 17.740000000000002
|
1917 |
-
- type: ndcg_at_5
|
1918 |
-
value: 15.625
|
1919 |
-
- type: precision_at_1
|
1920 |
-
value: 22.0
|
1921 |
-
- type: precision_at_10
|
1922 |
-
value: 9.700000000000001
|
1923 |
-
- type: precision_at_100
|
1924 |
-
value: 2.052
|
1925 |
-
- type: precision_at_1000
|
1926 |
-
value: 0.331
|
1927 |
-
- type: precision_at_3
|
1928 |
-
value: 16.533
|
1929 |
-
- type: precision_at_5
|
1930 |
-
value: 13.74
|
1931 |
-
- type: recall_at_1
|
1932 |
-
value: 4.473
|
1933 |
-
- type: recall_at_10
|
1934 |
-
value: 19.627
|
1935 |
-
- type: recall_at_100
|
1936 |
-
value: 41.63
|
1937 |
-
- type: recall_at_1000
|
1938 |
-
value: 67.173
|
1939 |
-
- type: recall_at_3
|
1940 |
-
value: 10.067
|
1941 |
-
- type: recall_at_5
|
1942 |
-
value: 13.927
|
1943 |
-
- task:
|
1944 |
-
type: STS
|
1945 |
-
dataset:
|
1946 |
-
type: mteb/sickr-sts
|
1947 |
-
name: MTEB SICK-R
|
1948 |
-
config: default
|
1949 |
-
split: test
|
1950 |
-
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1951 |
-
metrics:
|
1952 |
-
- type: cos_sim_pearson
|
1953 |
-
value: 83.27314719076216
|
1954 |
-
- type: cos_sim_spearman
|
1955 |
-
value: 76.39295628838427
|
1956 |
-
- type: euclidean_pearson
|
1957 |
-
value: 80.38849931283136
|
1958 |
-
- type: euclidean_spearman
|
1959 |
-
value: 76.39295685543406
|
1960 |
-
- type: manhattan_pearson
|
1961 |
-
value: 80.28382869912794
|
1962 |
-
- type: manhattan_spearman
|
1963 |
-
value: 76.28362123227473
|
1964 |
-
- task:
|
1965 |
-
type: STS
|
1966 |
-
dataset:
|
1967 |
-
type: mteb/sts12-sts
|
1968 |
-
name: MTEB STS12
|
1969 |
-
config: default
|
1970 |
-
split: test
|
1971 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1972 |
-
metrics:
|
1973 |
-
- type: cos_sim_pearson
|
1974 |
-
value: 82.36858074786585
|
1975 |
-
- type: cos_sim_spearman
|
1976 |
-
value: 72.81528838052759
|
1977 |
-
- type: euclidean_pearson
|
1978 |
-
value: 78.83576324502302
|
1979 |
-
- type: euclidean_spearman
|
1980 |
-
value: 72.8152880167174
|
1981 |
-
- type: manhattan_pearson
|
1982 |
-
value: 78.81284819385367
|
1983 |
-
- type: manhattan_spearman
|
1984 |
-
value: 72.76091465928633
|
1985 |
-
- task:
|
1986 |
-
type: STS
|
1987 |
-
dataset:
|
1988 |
-
type: mteb/sts13-sts
|
1989 |
-
name: MTEB STS13
|
1990 |
-
config: default
|
1991 |
-
split: test
|
1992 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1993 |
-
metrics:
|
1994 |
-
- type: cos_sim_pearson
|
1995 |
-
value: 81.08132718998489
|
1996 |
-
- type: cos_sim_spearman
|
1997 |
-
value: 82.00988939015869
|
1998 |
-
- type: euclidean_pearson
|
1999 |
-
value: 81.02243847451692
|
2000 |
-
- type: euclidean_spearman
|
2001 |
-
value: 82.00992010206836
|
2002 |
-
- type: manhattan_pearson
|
2003 |
-
value: 80.97749306075134
|
2004 |
-
- type: manhattan_spearman
|
2005 |
-
value: 81.97800195109437
|
2006 |
-
- task:
|
2007 |
-
type: STS
|
2008 |
-
dataset:
|
2009 |
-
type: mteb/sts14-sts
|
2010 |
-
name: MTEB STS14
|
2011 |
-
config: default
|
2012 |
-
split: test
|
2013 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2014 |
-
metrics:
|
2015 |
-
- type: cos_sim_pearson
|
2016 |
-
value: 80.83442047735284
|
2017 |
-
- type: cos_sim_spearman
|
2018 |
-
value: 77.50930325127395
|
2019 |
-
- type: euclidean_pearson
|
2020 |
-
value: 79.34941050260747
|
2021 |
-
- type: euclidean_spearman
|
2022 |
-
value: 77.50930324686452
|
2023 |
-
- type: manhattan_pearson
|
2024 |
-
value: 79.28081079289419
|
2025 |
-
- type: manhattan_spearman
|
2026 |
-
value: 77.42311420628891
|
2027 |
-
- task:
|
2028 |
-
type: STS
|
2029 |
-
dataset:
|
2030 |
-
type: mteb/sts15-sts
|
2031 |
-
name: MTEB STS15
|
2032 |
-
config: default
|
2033 |
-
split: test
|
2034 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2035 |
-
metrics:
|
2036 |
-
- type: cos_sim_pearson
|
2037 |
-
value: 85.70132781546333
|
2038 |
-
- type: cos_sim_spearman
|
2039 |
-
value: 86.58415907086527
|
2040 |
-
- type: euclidean_pearson
|
2041 |
-
value: 85.63892869817083
|
2042 |
-
- type: euclidean_spearman
|
2043 |
-
value: 86.58415907086527
|
2044 |
-
- type: manhattan_pearson
|
2045 |
-
value: 85.56054168116064
|
2046 |
-
- type: manhattan_spearman
|
2047 |
-
value: 86.50292824173809
|
2048 |
-
- task:
|
2049 |
-
type: STS
|
2050 |
-
dataset:
|
2051 |
-
type: mteb/sts16-sts
|
2052 |
-
name: MTEB STS16
|
2053 |
-
config: default
|
2054 |
-
split: test
|
2055 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2056 |
-
metrics:
|
2057 |
-
- type: cos_sim_pearson
|
2058 |
-
value: 81.48780971731246
|
2059 |
-
- type: cos_sim_spearman
|
2060 |
-
value: 82.79818891852887
|
2061 |
-
- type: euclidean_pearson
|
2062 |
-
value: 81.93990926192305
|
2063 |
-
- type: euclidean_spearman
|
2064 |
-
value: 82.79818891852887
|
2065 |
-
- type: manhattan_pearson
|
2066 |
-
value: 81.97538189750966
|
2067 |
-
- type: manhattan_spearman
|
2068 |
-
value: 82.88761825524075
|
2069 |
-
- task:
|
2070 |
-
type: STS
|
2071 |
-
dataset:
|
2072 |
-
type: mteb/sts17-crosslingual-sts
|
2073 |
-
name: MTEB STS17 (en-en)
|
2074 |
-
config: en-en
|
2075 |
-
split: test
|
2076 |
-
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2077 |
-
metrics:
|
2078 |
-
- type: cos_sim_pearson
|
2079 |
-
value: 88.4989925729811
|
2080 |
-
- type: cos_sim_spearman
|
2081 |
-
value: 88.47370962620529
|
2082 |
-
- type: euclidean_pearson
|
2083 |
-
value: 88.2312980339956
|
2084 |
-
- type: euclidean_spearman
|
2085 |
-
value: 88.47370962620529
|
2086 |
-
- type: manhattan_pearson
|
2087 |
-
value: 88.15570940509707
|
2088 |
-
- type: manhattan_spearman
|
2089 |
-
value: 88.36900000569275
|
2090 |
-
- task:
|
2091 |
-
type: STS
|
2092 |
-
dataset:
|
2093 |
-
type: mteb/sts22-crosslingual-sts
|
2094 |
-
name: MTEB STS22 (en)
|
2095 |
-
config: en
|
2096 |
-
split: test
|
2097 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2098 |
-
metrics:
|
2099 |
-
- type: cos_sim_pearson
|
2100 |
-
value: 63.90740805015967
|
2101 |
-
- type: cos_sim_spearman
|
2102 |
-
value: 63.968359064784444
|
2103 |
-
- type: euclidean_pearson
|
2104 |
-
value: 64.67928113832794
|
2105 |
-
- type: euclidean_spearman
|
2106 |
-
value: 63.968359064784444
|
2107 |
-
- type: manhattan_pearson
|
2108 |
-
value: 63.92597430517486
|
2109 |
-
- type: manhattan_spearman
|
2110 |
-
value: 63.31372007361158
|
2111 |
-
- task:
|
2112 |
-
type: STS
|
2113 |
-
dataset:
|
2114 |
-
type: mteb/stsbenchmark-sts
|
2115 |
-
name: MTEB STSBenchmark
|
2116 |
-
config: default
|
2117 |
-
split: test
|
2118 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2119 |
-
metrics:
|
2120 |
-
- type: cos_sim_pearson
|
2121 |
-
value: 82.56902991447632
|
2122 |
-
- type: cos_sim_spearman
|
2123 |
-
value: 83.16262853325924
|
2124 |
-
- type: euclidean_pearson
|
2125 |
-
value: 83.47693312869555
|
2126 |
-
- type: euclidean_spearman
|
2127 |
-
value: 83.16266829656969
|
2128 |
-
- type: manhattan_pearson
|
2129 |
-
value: 83.51067558632968
|
2130 |
-
- type: manhattan_spearman
|
2131 |
-
value: 83.25136388306153
|
2132 |
-
- task:
|
2133 |
-
type: Reranking
|
2134 |
-
dataset:
|
2135 |
-
type: mteb/scidocs-reranking
|
2136 |
-
name: MTEB SciDocsRR
|
2137 |
-
config: default
|
2138 |
-
split: test
|
2139 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2140 |
-
metrics:
|
2141 |
-
- type: map
|
2142 |
-
value: 80.1518040851234
|
2143 |
-
- type: mrr
|
2144 |
-
value: 94.49083052024228
|
2145 |
-
- task:
|
2146 |
-
type: Retrieval
|
2147 |
-
dataset:
|
2148 |
-
type: scifact
|
2149 |
-
name: MTEB SciFact
|
2150 |
-
config: default
|
2151 |
-
split: test
|
2152 |
-
revision: None
|
2153 |
-
metrics:
|
2154 |
-
- type: map_at_1
|
2155 |
-
value: 50.661
|
2156 |
-
- type: map_at_10
|
2157 |
-
value: 59.816
|
2158 |
-
- type: map_at_100
|
2159 |
-
value: 60.412
|
2160 |
-
- type: map_at_1000
|
2161 |
-
value: 60.446999999999996
|
2162 |
-
- type: map_at_3
|
2163 |
-
value: 56.567
|
2164 |
-
- type: map_at_5
|
2165 |
-
value: 58.45
|
2166 |
-
- type: mrr_at_1
|
2167 |
-
value: 53.667
|
2168 |
-
- type: mrr_at_10
|
2169 |
-
value: 61.342
|
2170 |
-
- type: mrr_at_100
|
2171 |
-
value: 61.8
|
2172 |
-
- type: mrr_at_1000
|
2173 |
-
value: 61.836
|
2174 |
-
- type: mrr_at_3
|
2175 |
-
value: 59.111000000000004
|
2176 |
-
- type: mrr_at_5
|
2177 |
-
value: 60.411
|
2178 |
-
- type: ndcg_at_1
|
2179 |
-
value: 53.667
|
2180 |
-
- type: ndcg_at_10
|
2181 |
-
value: 64.488
|
2182 |
-
- type: ndcg_at_100
|
2183 |
-
value: 67.291
|
2184 |
-
- type: ndcg_at_1000
|
2185 |
-
value: 68.338
|
2186 |
-
- type: ndcg_at_3
|
2187 |
-
value: 59.101000000000006
|
2188 |
-
- type: ndcg_at_5
|
2189 |
-
value: 61.812999999999995
|
2190 |
-
- type: precision_at_1
|
2191 |
-
value: 53.667
|
2192 |
-
- type: precision_at_10
|
2193 |
-
value: 8.799999999999999
|
2194 |
-
- type: precision_at_100
|
2195 |
-
value: 1.0330000000000001
|
2196 |
-
- type: precision_at_1000
|
2197 |
-
value: 0.11199999999999999
|
2198 |
-
- type: precision_at_3
|
2199 |
-
value: 23.0
|
2200 |
-
- type: precision_at_5
|
2201 |
-
value: 15.6
|
2202 |
-
- type: recall_at_1
|
2203 |
-
value: 50.661
|
2204 |
-
- type: recall_at_10
|
2205 |
-
value: 77.422
|
2206 |
-
- type: recall_at_100
|
2207 |
-
value: 90.667
|
2208 |
-
- type: recall_at_1000
|
2209 |
-
value: 99.0
|
2210 |
-
- type: recall_at_3
|
2211 |
-
value: 63.144
|
2212 |
-
- type: recall_at_5
|
2213 |
-
value: 69.817
|
2214 |
-
- task:
|
2215 |
-
type: PairClassification
|
2216 |
-
dataset:
|
2217 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
2218 |
-
name: MTEB SprintDuplicateQuestions
|
2219 |
-
config: default
|
2220 |
-
split: test
|
2221 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2222 |
-
metrics:
|
2223 |
-
- type: cos_sim_accuracy
|
2224 |
-
value: 99.81287128712871
|
2225 |
-
- type: cos_sim_ap
|
2226 |
-
value: 94.91998708151321
|
2227 |
-
- type: cos_sim_f1
|
2228 |
-
value: 90.36206017338093
|
2229 |
-
- type: cos_sim_precision
|
2230 |
-
value: 92.19562955254943
|
2231 |
-
- type: cos_sim_recall
|
2232 |
-
value: 88.6
|
2233 |
-
- type: dot_accuracy
|
2234 |
-
value: 99.81287128712871
|
2235 |
-
- type: dot_ap
|
2236 |
-
value: 94.91998708151321
|
2237 |
-
- type: dot_f1
|
2238 |
-
value: 90.36206017338093
|
2239 |
-
- type: dot_precision
|
2240 |
-
value: 92.19562955254943
|
2241 |
-
- type: dot_recall
|
2242 |
-
value: 88.6
|
2243 |
-
- type: euclidean_accuracy
|
2244 |
-
value: 99.81287128712871
|
2245 |
-
- type: euclidean_ap
|
2246 |
-
value: 94.9199944407842
|
2247 |
-
- type: euclidean_f1
|
2248 |
-
value: 90.36206017338093
|
2249 |
-
- type: euclidean_precision
|
2250 |
-
value: 92.19562955254943
|
2251 |
-
- type: euclidean_recall
|
2252 |
-
value: 88.6
|
2253 |
-
- type: manhattan_accuracy
|
2254 |
-
value: 99.8108910891089
|
2255 |
-
- type: manhattan_ap
|
2256 |
-
value: 94.83783896670839
|
2257 |
-
- type: manhattan_f1
|
2258 |
-
value: 90.27989821882952
|
2259 |
-
- type: manhattan_precision
|
2260 |
-
value: 91.91709844559585
|
2261 |
-
- type: manhattan_recall
|
2262 |
-
value: 88.7
|
2263 |
-
- type: max_accuracy
|
2264 |
-
value: 99.81287128712871
|
2265 |
-
- type: max_ap
|
2266 |
-
value: 94.9199944407842
|
2267 |
-
- type: max_f1
|
2268 |
-
value: 90.36206017338093
|
2269 |
-
- task:
|
2270 |
-
type: Clustering
|
2271 |
-
dataset:
|
2272 |
-
type: mteb/stackexchange-clustering
|
2273 |
-
name: MTEB StackExchangeClustering
|
2274 |
-
config: default
|
2275 |
-
split: test
|
2276 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2277 |
-
metrics:
|
2278 |
-
- type: v_measure
|
2279 |
-
value: 56.165546412944714
|
2280 |
-
- task:
|
2281 |
-
type: Clustering
|
2282 |
-
dataset:
|
2283 |
-
type: mteb/stackexchange-clustering-p2p
|
2284 |
-
name: MTEB StackExchangeClusteringP2P
|
2285 |
-
config: default
|
2286 |
-
split: test
|
2287 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2288 |
-
metrics:
|
2289 |
-
- type: v_measure
|
2290 |
-
value: 34.19894321136813
|
2291 |
-
- task:
|
2292 |
-
type: Reranking
|
2293 |
-
dataset:
|
2294 |
-
type: mteb/stackoverflowdupquestions-reranking
|
2295 |
-
name: MTEB StackOverflowDupQuestions
|
2296 |
-
config: default
|
2297 |
-
split: test
|
2298 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2299 |
-
metrics:
|
2300 |
-
- type: map
|
2301 |
-
value: 50.02944308369115
|
2302 |
-
- type: mrr
|
2303 |
-
value: 50.63055714710127
|
2304 |
-
- task:
|
2305 |
-
type: Summarization
|
2306 |
-
dataset:
|
2307 |
-
type: mteb/summeval
|
2308 |
-
name: MTEB SummEval
|
2309 |
-
config: default
|
2310 |
-
split: test
|
2311 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2312 |
-
metrics:
|
2313 |
-
- type: cos_sim_pearson
|
2314 |
-
value: 31.3377433394579
|
2315 |
-
- type: cos_sim_spearman
|
2316 |
-
value: 30.877807383527983
|
2317 |
-
- type: dot_pearson
|
2318 |
-
value: 31.337752376327405
|
2319 |
-
- type: dot_spearman
|
2320 |
-
value: 30.877807383527983
|
2321 |
-
- task:
|
2322 |
-
type: Retrieval
|
2323 |
-
dataset:
|
2324 |
-
type: trec-covid
|
2325 |
-
name: MTEB TRECCOVID
|
2326 |
-
config: default
|
2327 |
-
split: test
|
2328 |
-
revision: None
|
2329 |
-
metrics:
|
2330 |
-
- type: map_at_1
|
2331 |
-
value: 0.20500000000000002
|
2332 |
-
- type: map_at_10
|
2333 |
-
value: 1.6099999999999999
|
2334 |
-
- type: map_at_100
|
2335 |
-
value: 8.635
|
2336 |
-
- type: map_at_1000
|
2337 |
-
value: 20.419999999999998
|
2338 |
-
- type: map_at_3
|
2339 |
-
value: 0.59
|
2340 |
-
- type: map_at_5
|
2341 |
-
value: 0.9249999999999999
|
2342 |
-
- type: mrr_at_1
|
2343 |
-
value: 80.0
|
2344 |
-
- type: mrr_at_10
|
2345 |
-
value: 88.452
|
2346 |
-
- type: mrr_at_100
|
2347 |
-
value: 88.452
|
2348 |
-
- type: mrr_at_1000
|
2349 |
-
value: 88.452
|
2350 |
-
- type: mrr_at_3
|
2351 |
-
value: 87.667
|
2352 |
-
- type: mrr_at_5
|
2353 |
-
value: 88.167
|
2354 |
-
- type: ndcg_at_1
|
2355 |
-
value: 77.0
|
2356 |
-
- type: ndcg_at_10
|
2357 |
-
value: 67.079
|
2358 |
-
- type: ndcg_at_100
|
2359 |
-
value: 49.937
|
2360 |
-
- type: ndcg_at_1000
|
2361 |
-
value: 44.031
|
2362 |
-
- type: ndcg_at_3
|
2363 |
-
value: 73.123
|
2364 |
-
- type: ndcg_at_5
|
2365 |
-
value: 70.435
|
2366 |
-
- type: precision_at_1
|
2367 |
-
value: 80.0
|
2368 |
-
- type: precision_at_10
|
2369 |
-
value: 70.39999999999999
|
2370 |
-
- type: precision_at_100
|
2371 |
-
value: 51.25999999999999
|
2372 |
-
- type: precision_at_1000
|
2373 |
-
value: 19.698
|
2374 |
-
- type: precision_at_3
|
2375 |
-
value: 78.0
|
2376 |
-
- type: precision_at_5
|
2377 |
-
value: 75.2
|
2378 |
-
- type: recall_at_1
|
2379 |
-
value: 0.20500000000000002
|
2380 |
-
- type: recall_at_10
|
2381 |
-
value: 1.8399999999999999
|
2382 |
-
- type: recall_at_100
|
2383 |
-
value: 11.971
|
2384 |
-
- type: recall_at_1000
|
2385 |
-
value: 41.042
|
2386 |
-
- type: recall_at_3
|
2387 |
-
value: 0.632
|
2388 |
-
- type: recall_at_5
|
2389 |
-
value: 1.008
|
2390 |
-
- task:
|
2391 |
-
type: Retrieval
|
2392 |
-
dataset:
|
2393 |
-
type: webis-touche2020
|
2394 |
-
name: MTEB Touche2020
|
2395 |
-
config: default
|
2396 |
-
split: test
|
2397 |
-
revision: None
|
2398 |
-
metrics:
|
2399 |
-
- type: map_at_1
|
2400 |
-
value: 1.183
|
2401 |
-
- type: map_at_10
|
2402 |
-
value: 9.58
|
2403 |
-
- type: map_at_100
|
2404 |
-
value: 16.27
|
2405 |
-
- type: map_at_1000
|
2406 |
-
value: 17.977999999999998
|
2407 |
-
- type: map_at_3
|
2408 |
-
value: 4.521
|
2409 |
-
- type: map_at_5
|
2410 |
-
value: 6.567
|
2411 |
-
- type: mrr_at_1
|
2412 |
-
value: 12.245000000000001
|
2413 |
-
- type: mrr_at_10
|
2414 |
-
value: 33.486
|
2415 |
-
- type: mrr_at_100
|
2416 |
-
value: 34.989
|
2417 |
-
- type: mrr_at_1000
|
2418 |
-
value: 34.989
|
2419 |
-
- type: mrr_at_3
|
2420 |
-
value: 28.231
|
2421 |
-
- type: mrr_at_5
|
2422 |
-
value: 31.701
|
2423 |
-
- type: ndcg_at_1
|
2424 |
-
value: 9.184000000000001
|
2425 |
-
- type: ndcg_at_10
|
2426 |
-
value: 22.133
|
2427 |
-
- type: ndcg_at_100
|
2428 |
-
value: 36.882
|
2429 |
-
- type: ndcg_at_1000
|
2430 |
-
value: 48.487
|
2431 |
-
- type: ndcg_at_3
|
2432 |
-
value: 18.971
|
2433 |
-
- type: ndcg_at_5
|
2434 |
-
value: 20.107
|
2435 |
-
- type: precision_at_1
|
2436 |
-
value: 12.245000000000001
|
2437 |
-
- type: precision_at_10
|
2438 |
-
value: 21.837
|
2439 |
-
- type: precision_at_100
|
2440 |
-
value: 8.265
|
2441 |
-
- type: precision_at_1000
|
2442 |
-
value: 1.606
|
2443 |
-
- type: precision_at_3
|
2444 |
-
value: 22.448999999999998
|
2445 |
-
- type: precision_at_5
|
2446 |
-
value: 23.265
|
2447 |
-
- type: recall_at_1
|
2448 |
-
value: 1.183
|
2449 |
-
- type: recall_at_10
|
2450 |
-
value: 17.01
|
2451 |
-
- type: recall_at_100
|
2452 |
-
value: 51.666000000000004
|
2453 |
-
- type: recall_at_1000
|
2454 |
-
value: 87.56
|
2455 |
-
- type: recall_at_3
|
2456 |
-
value: 6.0280000000000005
|
2457 |
-
- type: recall_at_5
|
2458 |
-
value: 9.937999999999999
|
2459 |
-
- task:
|
2460 |
-
type: Classification
|
2461 |
-
dataset:
|
2462 |
-
type: mteb/toxic_conversations_50k
|
2463 |
-
name: MTEB ToxicConversationsClassification
|
2464 |
-
config: default
|
2465 |
-
split: test
|
2466 |
-
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2467 |
-
metrics:
|
2468 |
-
- type: accuracy
|
2469 |
-
value: 70.6812
|
2470 |
-
- type: ap
|
2471 |
-
value: 13.776718216594006
|
2472 |
-
- type: f1
|
2473 |
-
value: 54.14269849375851
|
2474 |
-
- task:
|
2475 |
-
type: Classification
|
2476 |
-
dataset:
|
2477 |
-
type: mteb/tweet_sentiment_extraction
|
2478 |
-
name: MTEB TweetSentimentExtractionClassification
|
2479 |
-
config: default
|
2480 |
-
split: test
|
2481 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2482 |
-
metrics:
|
2483 |
-
- type: accuracy
|
2484 |
-
value: 57.3372948500283
|
2485 |
-
- type: f1
|
2486 |
-
value: 57.39381291375
|
2487 |
-
- task:
|
2488 |
-
type: Clustering
|
2489 |
-
dataset:
|
2490 |
-
type: mteb/twentynewsgroups-clustering
|
2491 |
-
name: MTEB TwentyNewsgroupsClustering
|
2492 |
-
config: default
|
2493 |
-
split: test
|
2494 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2495 |
-
metrics:
|
2496 |
-
- type: v_measure
|
2497 |
-
value: 41.49681931876514
|
2498 |
-
- task:
|
2499 |
-
type: PairClassification
|
2500 |
-
dataset:
|
2501 |
-
type: mteb/twittersemeval2015-pairclassification
|
2502 |
-
name: MTEB TwitterSemEval2015
|
2503 |
-
config: default
|
2504 |
-
split: test
|
2505 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2506 |
-
metrics:
|
2507 |
-
- type: cos_sim_accuracy
|
2508 |
-
value: 84.65756690707516
|
2509 |
-
- type: cos_sim_ap
|
2510 |
-
value: 70.06190309300052
|
2511 |
-
- type: cos_sim_f1
|
2512 |
-
value: 65.49254432311848
|
2513 |
-
- type: cos_sim_precision
|
2514 |
-
value: 59.00148085466469
|
2515 |
-
- type: cos_sim_recall
|
2516 |
-
value: 73.58839050131925
|
2517 |
-
- type: dot_accuracy
|
2518 |
-
value: 84.65756690707516
|
2519 |
-
- type: dot_ap
|
2520 |
-
value: 70.06187157356817
|
2521 |
-
- type: dot_f1
|
2522 |
-
value: 65.49254432311848
|
2523 |
-
- type: dot_precision
|
2524 |
-
value: 59.00148085466469
|
2525 |
-
- type: dot_recall
|
2526 |
-
value: 73.58839050131925
|
2527 |
-
- type: euclidean_accuracy
|
2528 |
-
value: 84.65756690707516
|
2529 |
-
- type: euclidean_ap
|
2530 |
-
value: 70.06190439203068
|
2531 |
-
- type: euclidean_f1
|
2532 |
-
value: 65.49254432311848
|
2533 |
-
- type: euclidean_precision
|
2534 |
-
value: 59.00148085466469
|
2535 |
-
- type: euclidean_recall
|
2536 |
-
value: 73.58839050131925
|
2537 |
-
- type: manhattan_accuracy
|
2538 |
-
value: 84.58604041246946
|
2539 |
-
- type: manhattan_ap
|
2540 |
-
value: 69.93103436414437
|
2541 |
-
- type: manhattan_f1
|
2542 |
-
value: 65.48780487804878
|
2543 |
-
- type: manhattan_precision
|
2544 |
-
value: 60.8843537414966
|
2545 |
-
- type: manhattan_recall
|
2546 |
-
value: 70.84432717678101
|
2547 |
-
- type: max_accuracy
|
2548 |
-
value: 84.65756690707516
|
2549 |
-
- type: max_ap
|
2550 |
-
value: 70.06190439203068
|
2551 |
-
- type: max_f1
|
2552 |
-
value: 65.49254432311848
|
2553 |
-
- task:
|
2554 |
-
type: PairClassification
|
2555 |
-
dataset:
|
2556 |
-
type: mteb/twitterurlcorpus-pairclassification
|
2557 |
-
name: MTEB TwitterURLCorpus
|
2558 |
-
config: default
|
2559 |
-
split: test
|
2560 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2561 |
-
metrics:
|
2562 |
-
- type: cos_sim_accuracy
|
2563 |
-
value: 88.78410369852912
|
2564 |
-
- type: cos_sim_ap
|
2565 |
-
value: 85.45825760499459
|
2566 |
-
- type: cos_sim_f1
|
2567 |
-
value: 77.73455035163849
|
2568 |
-
- type: cos_sim_precision
|
2569 |
-
value: 75.5966239813737
|
2570 |
-
- type: cos_sim_recall
|
2571 |
-
value: 79.9969202340622
|
2572 |
-
- type: dot_accuracy
|
2573 |
-
value: 88.78410369852912
|
2574 |
-
- type: dot_ap
|
2575 |
-
value: 85.45825790635979
|
2576 |
-
- type: dot_f1
|
2577 |
-
value: 77.73455035163849
|
2578 |
-
- type: dot_precision
|
2579 |
-
value: 75.5966239813737
|
2580 |
-
- type: dot_recall
|
2581 |
-
value: 79.9969202340622
|
2582 |
-
- type: euclidean_accuracy
|
2583 |
-
value: 88.78410369852912
|
2584 |
-
- type: euclidean_ap
|
2585 |
-
value: 85.45826341243391
|
2586 |
-
- type: euclidean_f1
|
2587 |
-
value: 77.73455035163849
|
2588 |
-
- type: euclidean_precision
|
2589 |
-
value: 75.5966239813737
|
2590 |
-
- type: euclidean_recall
|
2591 |
-
value: 79.9969202340622
|
2592 |
-
- type: manhattan_accuracy
|
2593 |
-
value: 88.7026041060271
|
2594 |
-
- type: manhattan_ap
|
2595 |
-
value: 85.43182830781821
|
2596 |
-
- type: manhattan_f1
|
2597 |
-
value: 77.61487303506651
|
2598 |
-
- type: manhattan_precision
|
2599 |
-
value: 76.20955773226477
|
2600 |
-
- type: manhattan_recall
|
2601 |
-
value: 79.07299045272559
|
2602 |
-
- type: max_accuracy
|
2603 |
-
value: 88.78410369852912
|
2604 |
-
- type: max_ap
|
2605 |
-
value: 85.45826341243391
|
2606 |
-
- type: max_f1
|
2607 |
-
value: 77.73455035163849
|
2608 |
-
---
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- finetuner
|
5 |
+
- mteb
|
6 |
- sentence-transformers
|
7 |
- feature-extraction
|
8 |
- sentence-similarity
|
9 |
+
- alibi
|
10 |
datasets:
|
11 |
+
- allenai/c4
|
12 |
language: en
|
13 |
license: apache-2.0
|
14 |
model-index:
|
15 |
+
- name: jina-embedding-s-en-v2
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
<!-- TODO: add evaluation results here -->
|
19 |
+
<br><br>
|
20 |
+
|
21 |
+
<p align="center">
|
22 |
+
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
23 |
+
</p>
|
24 |
+
|
25 |
+
|
26 |
+
<p align="center">
|
27 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
|
28 |
+
</p>
|
29 |
+
|
30 |
+
|
31 |
+
## Intended Usage & Model Info
|
32 |
+
|
33 |
+
`jina-embedding-s-en-v2` is an English, monolingual embedding model supporting 8k sequence length.
|
34 |
+
It is based on a Bert architecture that supports the symmetric bidirectional variant of ALiBi to support longer sequence length.
|
35 |
+
The backbone Jina Bert Small model is pretrained on the C4 dataset.
|
36 |
+
The model is further trained on Jina AI's collection of more than 40 datasets of sentence pairs and hard negatives.
|
37 |
+
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
|
38 |
+
|
39 |
+
The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length thanks to ALiBi.
|
40 |
+
This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search,...
|
41 |
+
|
42 |
+
This model has 33 million parameters, which enables lightning-fast and memory efficient inference on long documents, while still delivering impressive performance.
|
43 |
+
Additionally, we provide the following embedding models, supporting 8k sequence length as well:
|
44 |
+
|
45 |
+
- [`jina-embedding-s-en-v2`](https://huggingface.co/jinaai/jina-embedding-s-en-v2): 33 million parameters **(you are here)**.
|
46 |
+
- [`jina-embedding-b-en-v2`](https://huggingface.co/jinaai/jina-embedding-b-en-v2): 137 million parameters.
|
47 |
+
- [`jina-embedding-l-en-v2`](https://huggingface.co/jinaai/jina-embedding-l-en-v2): 435 million parameters.
|
48 |
+
|
49 |
+
## Data & Parameters
|
50 |
+
|
51 |
+
Please checkout our [technical blog](https://arxiv.org/abs/2307.11224).
|
52 |
+
|
53 |
+
## Metrics
|
54 |
+
|
55 |
+
We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
|
56 |
+
|
57 |
+
<!-- TODO: add evaluation table here -->
|
58 |
+
|
59 |
+
## Usage
|
60 |
+
|
61 |
+
You can use Jina Embedding models directly from transformers package:
|
62 |
+
```python
|
63 |
+
!pip install transformers
|
64 |
+
from transformers import AutoModel
|
65 |
+
from numpy.linalg import norm
|
66 |
+
|
67 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
68 |
+
model = AutoModel.from_pretrained('jinaai/jina-embedding-s-en-v2', trust_remote_code=True) # trust_remote_code is needed to use the encode method
|
69 |
+
embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?'])
|
70 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
71 |
+
```
|
72 |
+
|
73 |
+
For long sequences, it's recommended to perform inference using Flash Attention. Using Flash Attention allows you to increase the batch size and throughput for long sequence length.
|
74 |
+
We include an experimental implementation for Flash Attention, shipped with the model.
|
75 |
+
Install the following triton version:
|
76 |
+
`pip install triton==2.0.0.dev20221202`.
|
77 |
+
Now run the same code above, but make sure to set the parameter `with_flash` to `True` when you load the model. You also have to use either `fp16` or `bf16`:
|
78 |
+
```python
|
79 |
+
from transformers import AutoModel
|
80 |
+
from numpy.linalg import norm
|
81 |
+
import torch
|
82 |
+
|
83 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
84 |
+
model = AutoModel.from_pretrained('jinaai/jina-embedding-s-en-v2', trust_remote_code=True, with_flash=True, torch_dtype=torch.float16).cuda() # trust_remote_code is needed to use the encode method
|
85 |
+
embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?'])
|
86 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
87 |
+
```
|
88 |
+
|
89 |
+
## Fine-tuning
|
90 |
+
|
91 |
+
Please consider [Finetuner](https://github.com/jina-ai/finetuner).
|
92 |
+
|
93 |
+
## Plans
|
94 |
+
The development of new multilingual models is currently underway. We will be targeting mainly the German and Spanish languages. The upcoming models will be called `jina-embedding-s/b/l-de/es-v2`.
|
95 |
+
|
96 |
+
## Contact
|
97 |
+
|
98 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
99 |
+
|
100 |
+
## Citation
|
101 |
+
|
102 |
+
If you find Jina Embeddings useful in your research, please cite the following paper:
|
103 |
+
|
104 |
+
<!-- TODO: update the paper ID once it is published on arxiv -->
|
105 |
+
``` latex
|
106 |
+
@misc{günther2023jina,
|
107 |
+
title={Beyond the 512-Token Barrier: Training General-Purpose Text
|
108 |
+
Embeddings for Large Documents},
|
109 |
+
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang},
|
110 |
+
year={2023},
|
111 |
+
eprint={2307.11224},
|
112 |
+
archivePrefix={arXiv},
|
113 |
+
primaryClass={cs.CL}
|
114 |
+
}
|
115 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|