File size: 8,365 Bytes
57d7f74
 
 
 
 
 
 
e8fc0c7
57d7f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8fc0c7
 
 
 
 
57d7f74
 
 
 
 
 
 
 
 
 
 
 
 
ebf2504
cd40fae
57d7f74
cd40fae
88ee741
 
 
 
 
 
 
d2c8810
 
 
88ee741
ebf2504
 
 
 
57d7f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebf2504
 
 
 
 
 
 
 
 
 
 
 
9cd1bdf
57d7f74
9cd1bdf
ebf2504
9cd1bdf
57d7f74
 
ebf2504
 
 
 
 
 
57d7f74
9cd1bdf
 
66e357b
57d7f74
e59450e
57d7f74
 
 
 
 
8bb104b
57d7f74
 
 
 
 
 
 
 
e8fc0c7
 
 
 
57d7f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54da5c0
 
 
57d7f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import json
import os
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
from torch import nn
from transformers import AutoConfig, AutoModel, AutoTokenizer


class Transformer(nn.Module):
    """Huggingface AutoModel to generate token embeddings.
    Loads the correct class, e.g. BERT / RoBERTa etc.

    Args:
        model_name_or_path: Huggingface models name
            (https://huggingface.co/models)
        max_seq_length: Truncate any inputs longer than max_seq_length
        model_args: Keyword arguments passed to the Huggingface
            Transformers model
        tokenizer_args: Keyword arguments passed to the Huggingface
            Transformers tokenizer
        config_args: Keyword arguments passed to the Huggingface
            Transformers config
        cache_dir: Cache dir for Huggingface Transformers to store/load
            models
        do_lower_case: If true, lowercases the input (independent if the
            model is cased or not)
        tokenizer_name_or_path: Name or path of the tokenizer. When
            None, then model_name_or_path is used
    """

    def __init__(
        self,
        model_name_or_path: str,
        max_seq_length: int = None,
        model_args: Dict[str, Any] = None,
        tokenizer_args: Dict[str, Any] = None,
        config_args: Dict[str, Any] = None,
        cache_dir: str = None,
        do_lower_case: bool = False,
        tokenizer_name_or_path: str = None,
    ) -> None:
        super().__init__()
        self.config_keys = ["max_seq_length", "do_lower_case"]
        self.do_lower_case = do_lower_case
        if model_args is None:
            model_args = {}
        if tokenizer_args is None:
            tokenizer_args = {}
        if config_args is None:
            config_args = {}

        
        self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)

        self._lora_adaptations = self.config.lora_adaptations
        if (
            not isinstance(self._lora_adaptations, list)
            or len(self._lora_adaptations) < 1
        ):
            raise ValueError(
                f"`lora_adaptations` must be a list and contain at least one element"
            )
        self._adaptation_map = {
            name: idx for idx, name in enumerate(self._lora_adaptations)
        }

        self.default_task = model_args.pop('default_task', None)

        self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args)

        if max_seq_length is not None and "model_max_length" not in tokenizer_args:
            tokenizer_args["model_max_length"] = max_seq_length
        self.tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
            cache_dir=cache_dir,
            **tokenizer_args,
        )

        # No max_seq_length set. Try to infer from model
        if max_seq_length is None:
            if (
                hasattr(self.auto_model, "config")
                and hasattr(self.auto_model.config, "max_position_embeddings")
                and hasattr(self.tokenizer, "model_max_length")
            ):
                max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length)

        self.max_seq_length = max_seq_length

        if tokenizer_name_or_path is not None:
            self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__


    @property
    def default_task(self):
        return self._default_task

    @default_task.setter
    def default_task(self, task: Union[None, str]):
        self._validate_task(task)
        self._default_task = task
        

    def _validate_task(self, task: str):
        if task and task not in self._lora_adaptations:
            raise ValueError(
                f"Unsupported task '{task}'. "
                f"Supported tasks are: {', '.join(self.config.lora_adaptations)}. "
                f"Alternatively, don't pass the `task` argument to disable LoRA."
            )

    def forward(
        self, features: Dict[str, torch.Tensor], task: Optional[str] = None
    ) -> Dict[str, torch.Tensor]:
        """Returns token_embeddings, cls_token"""
        self._validate_task(task)
        task = task or self.default_task
        adapter_mask = None
        if task:
            task_id = self._adaptation_map[task]
            num_examples = features['input_ids'].size(0)
            adapter_mask = torch.full(
                (num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
            )

        lora_arguments = (
            {"adapter_mask": adapter_mask} if adapter_mask is not None else {}
        )
        output_states = self.auto_model.forward(**features, **lora_arguments, return_dict=False)
        output_tokens = output_states[0]
        features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]})
        return features

    def get_word_embedding_dimension(self) -> int:
        return self.auto_model.config.hidden_size

    def tokenize(
        self,
        texts: Union[List[str], List[dict], List[Tuple[str, str]]],
        padding: Union[str, bool] = True
    ) -> Dict[str, torch.Tensor]:
        """Tokenizes a text and maps tokens to token-ids"""
        output = {}
        if isinstance(texts[0], str):
            to_tokenize = [texts]
        elif isinstance(texts[0], dict):
            to_tokenize = []
            output["text_keys"] = []
            for lookup in texts:
                text_key, text = next(iter(lookup.items()))
                to_tokenize.append(text)
                output["text_keys"].append(text_key)
            to_tokenize = [to_tokenize]
        else:
            batch1, batch2 = [], []
            for text_tuple in texts:
                batch1.append(text_tuple[0])
                batch2.append(text_tuple[1])
            to_tokenize = [batch1, batch2]

        # strip
        to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize]

        # Lowercase
        if self.do_lower_case:
            to_tokenize = [[s.lower() for s in col] for col in to_tokenize]

        output.update(
            self.tokenizer(
                *to_tokenize,
                padding=padding,
                truncation="longest_first",
                return_tensors="pt",
                max_length=self.max_seq_length,
            )
        )
        return output

    def get_config_dict(self) -> dict[str, Any]:
         return {key: self.__dict__[key] for key in self.config_keys}

    def save(self, output_path: str, safe_serialization: bool = True) -> None:
        self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization)
        self.tokenizer.save_pretrained(output_path)

        with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut:
            json.dump(self.get_config_dict(), fOut, indent=2)


    @classmethod
    def load(cls, input_path: str) -> "Transformer":
        # Old classes used other config names than 'sentence_bert_config.json'
        for config_name in [
            "sentence_bert_config.json",
            "sentence_roberta_config.json",
            "sentence_distilbert_config.json",
            "sentence_camembert_config.json",
            "sentence_albert_config.json",
            "sentence_xlm-roberta_config.json",
            "sentence_xlnet_config.json",
        ]:
            sbert_config_path = os.path.join(input_path, config_name)
            if os.path.exists(sbert_config_path):
                break

        with open(sbert_config_path) as fIn:
            config = json.load(fIn)
        # Don't allow configs to set trust_remote_code
        if "model_args" in config and "trust_remote_code" in config["model_args"]:
            config["model_args"].pop("trust_remote_code")
        if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
            config["tokenizer_args"].pop("trust_remote_code")
        if "config_args" in config and "trust_remote_code" in config["config_args"]:
            config["config_args"].pop("trust_remote_code")
        return cls(model_name_or_path=input_path, **config)