jupyterjazz
commited on
readme: performance (#13)
Browse files- readme: performance (2ae59f13ef1da5b1e5e6da1a9af3e046022e721d)
- Update README.md (345e9847da02575dce7402bbf6ff8e94acb4d051)
- Update README.md (8bf13307453413d31a80af5be46b4f4b0d605ab0)
- Update README.md (b04e3556a464a45330ce3068691ba5446621c032)
- Update README.md (3290a52bb31d8191747ef19be28887add8f0f102)
README.md
CHANGED
@@ -120,7 +120,7 @@ library_name: transformers
|
|
120 |
|
121 |
## Quick Start
|
122 |
|
123 |
-
The easiest way to
|
124 |
|
125 |
|
126 |
## Intended Usage & Model Info
|
@@ -201,7 +201,7 @@ embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
201 |
</p>
|
202 |
</details>
|
203 |
|
204 |
-
The easiest way to start using `jina-embeddings-v3` is Jina AI's [
|
205 |
|
206 |
Alternatively, you can use `jina-embeddings-v3` directly via Transformers package:
|
207 |
```python
|
@@ -254,17 +254,61 @@ The latest version (#todo: specify version) of SentenceTransformers also support
|
|
254 |
from sentence_transformers import SentenceTransformer
|
255 |
|
256 |
model = SentenceTransformer(
|
257 |
-
"jinaai/jina-embeddings-v3",
|
|
|
|
|
|
|
|
|
|
|
258 |
)
|
259 |
|
260 |
-
embeddings = model.encode(['
|
261 |
```
|
262 |
|
263 |
|
264 |
|
265 |
## Performance
|
266 |
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
## Contact
|
270 |
|
|
|
120 |
|
121 |
## Quick Start
|
122 |
|
123 |
+
The easiest way to start using `jina-embeddings-v3` is Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
124 |
|
125 |
|
126 |
## Intended Usage & Model Info
|
|
|
201 |
</p>
|
202 |
</details>
|
203 |
|
204 |
+
The easiest way to start using `jina-embeddings-v3` is Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
205 |
|
206 |
Alternatively, you can use `jina-embeddings-v3` directly via Transformers package:
|
207 |
```python
|
|
|
254 |
from sentence_transformers import SentenceTransformer
|
255 |
|
256 |
model = SentenceTransformer(
|
257 |
+
"jinaai/jina-embeddings-v3",
|
258 |
+
prompts={
|
259 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: ",
|
260 |
+
"retrieval.passage": "Represent the document for retrieval: ",
|
261 |
+
},
|
262 |
+
trust_remote_code=True
|
263 |
)
|
264 |
|
265 |
+
embeddings = model.encode(['What is the weather like in Berlin today?'], task_type='retrieval.query')
|
266 |
```
|
267 |
|
268 |
|
269 |
|
270 |
## Performance
|
271 |
|
272 |
+
### English MTEB
|
273 |
+
| Model | Average | Classification | Clustering | Pair Classification | Reranking | Retrieval | STS | Summarization |
|
274 |
+
|:------------------------------:|:-------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
275 |
+
| jina-embeddings-v2-en | 58.12 | 68.82| 40.08| 84.44| 55.09| 45.64| 80.00| 30.56|
|
276 |
+
| jina-embeddings-v3 | **65.60** | **82.58**| 45.27| 84.01| 58.13| 53.87| **85.8** | 30.98|
|
277 |
+
| text-embedding-3-large | 62.03 | 75.45| 49.01| 84.22| 59.16| 55.44| 81.04| 29.92|
|
278 |
+
| multilingual-e5-large-instruct | 64.41 | 77.56| 47.1 | 86.19| 58.58| 52.47| 84.78| 30.39|
|
279 |
+
| Cohere-embed-multilingual-v3.0 | 60.08 | 64.01| 46.6 | 86.15| 57.86| 53.84| 83.15| 30.99|
|
280 |
+
|
281 |
+
### Multilingual MTEB
|
282 |
+
|
283 |
+
| Model | Average | Classification | Clustering | Pair Classification | Reranking | Retrieval | STS | Summarization |
|
284 |
+
|:------------------------------:|:-------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
285 |
+
| jina-embeddings-v2 | 60.54 | 65.69| 39.36| **82.95**| 66.57| 58.24| 66.6 | - |
|
286 |
+
| jina-embeddings-v3 | **64.44** | **71.46**| 46.71| 76.91| 63.98| 57.98| **69.83**| - |
|
287 |
+
| multilingual-e5-large | 59.58 | 65.22| 42.12| 76.95| 63.4 | 52.37| 64.65| - |
|
288 |
+
| multilingual-e5-large-instruct | 64.25 | 67.45| **52.12**| 77.79| **69.02**| **58.38**| 68.77| - |
|
289 |
+
|
290 |
+
|
291 |
+
### Long Context Tasks (LongEmbed)
|
292 |
+
|
293 |
+
| Model | Average | NarrativeQA | Needle | Passkey | QMSum | SummScreen | WikiQA |
|
294 |
+
|:--------------------:|:-------:|:-----------:|:------:|:-------:|:-----:|:----------:|:------:|
|
295 |
+
| jina-embeddings-v3* | **70.39** | 33.32 | **84.00** | **100.00** | **39.75** | 92.78 | 72.46 |
|
296 |
+
| jina-embeddings-v2 | 58.12 | 37.89 | 54.25 | 50.25 | 38.87 | 93.48 | 73.99 |
|
297 |
+
| text-embedding-3-large | 51.3 | 44.09 | 29.25 | 63.00 | 32.49 | 84.80 | 54.16 |
|
298 |
+
| baai-bge-m3 | 56.56 | **45.76** | 40.25 | 46.00 | 35.54 | **94.09** | **77.73** |
|
299 |
+
|
300 |
+
**Notes:**
|
301 |
+
- `*`: text-matching adapter
|
302 |
+
|
303 |
+
|
304 |
+
#### Matryoshka Embeddings
|
305 |
+
|
306 |
+
| Task | 32 | 64 | 128 | 256 | 512 | 768 | 1024 |
|
307 |
+
|:-------------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
308 |
+
| Retrieval | 52.54| 58.54| 61.64| 62.72| 63.16| 63.30| 63.35|
|
309 |
+
| STS | 76.35| 77.03| 77.43| 77.56| 77.59| 77.59| 77.58|
|
310 |
+
|
311 |
+
For a comprehensive evaluation and detailed metrics, please refer to the full paper available here (coming soon).
|
312 |
|
313 |
## Contact
|
314 |
|