numb3r3 commited on
Commit
7884ec1
1 Parent(s): 697801a

chore: init readme

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ tags:
7
+ - reranker
8
+ - cross-encoder
9
+ ---
10
+
11
+ <br><br>
12
+
13
+ <p align="center">
14
+ <img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
15
+ </p>
16
+
17
+ <p align="center">
18
+ <b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
19
+ </p>
20
+
21
+ # jina-reranker-v1-turbo-en
22
+
23
+ This model is designed for **blazing-fast** reranking while maintaining **competitive performance**. What's more, it leverages the power of our [JinaBERT](https://arxiv.org/abs/2310.19923) model as their foundation. JinaBERT itself is a unique variant of the BERT architecture that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409). This allows `jina-reranker-v1-turbo-en` to process significantly longer sequences of text compared to other reranking models, up to an impressive **8,192** tokens.
24
+
25
+ To achieve the remarkable speed, the `jina-reranker-v1-turbo-en` employ a technique called knowledge distillation. Here, a complex, but slower, model (like our original [jina-reranker-v1-base-en](https://jina.ai/reranker/)) acts as a teacher, condensing its knowledge into a smaller, faster student model. This student retains most of the teacher's knowledge, allowing it to deliver similar accuracy in a fraction of the time.
26
+
27
+ Here's a breakdown of the reranker models we provide:
28
+
29
+ | Model Name | Layers | Hidden Size | Parameters (Millions) |
30
+ | ------------------------------------------------------------------------------------ | ------ | ----------- | --------------------- |
31
+ | [jina-reranker-v1-base-en](https://jina.ai/reranker/) | 12 | 768 | 137.0 |
32
+ | [jina-reranker-v1-turbo-en](https://huggingface.co/jinaai/jina-reranker-v1-turbo-en) | 6 | 384 | 37.8 |
33
+ | [jina-reranker-v1-tiny-en](https://huggingface.co/jinaai/jina-reranker-v1-tiny-en) | 4 | 384 | 33.0 |
34
+
35
+ # Usage
36
+
37
+ You can use Jina Reranker models directly from transformers package:
38
+
39
+ ```python
40
+ !pip install transformers
41
+ from transformers import AutoModelForSequenceClassification
42
+
43
+ model = AutoModelForSequenceClassification.from_pretrained(
44
+ 'jinaai/jina-reranker-v1-turbo-en', num_labels=1, trust_remote_code=True
45
+ )
46
+
47
+ # Example query and documents
48
+ query = "Organic skincare products for sensitive skin"
49
+ documents = [
50
+ "Eco-friendly kitchenware for modern homes",
51
+ "Biodegradable cleaning supplies for eco-conscious consumers",
52
+ "Organic cotton baby clothes for sensitive skin",
53
+ "Natural organic skincare range for sensitive skin",
54
+ "Tech gadgets for smart homes: 2024 edition",
55
+ "Sustainable gardening tools and compost solutions",
56
+ "Sensitive skin-friendly facial cleansers and toners",
57
+ "Organic food wraps and storage solutions",
58
+ "All-natural pet food for dogs with allergies",
59
+ "Yoga mats made from recycled materials"
60
+ ]
61
+
62
+ # construct sentence pairs
63
+ sentence_pairs = [[query, doc] for doc in documents]
64
+
65
+ scores = model.compute_score(sentence_pairs)
66
+ ```
67
+
68
+ # Contact
69
+
70
+ Join our [Discord community](https://discord.jina.ai/) and chat with other community members about ideas.