File size: 28,011 Bytes
67b96c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# Copyright (c) 2023, Tri Dao.
# Adapted from https://github.com/Dao-AILab/flash-attention/pull/556

import math
from functools import partial

import torch
import torch.nn as nn
from einops import rearrange, repeat

try:
    from flash_attn import (
        flash_attn_kvpacked_func,
        flash_attn_qkvpacked_func,
        flash_attn_varlen_kvpacked_func,
        flash_attn_varlen_qkvpacked_func,
        flash_attn_with_kvcache,
    )
except ImportError:
    flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
    flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
    flash_attn_with_kvcache = None

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear
except ImportError:
    FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None


class FlashSelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """

    def __init__(
        self,
        causal=False,
        softmax_scale=None,
        attention_dropout=0.0,
        window_size=(-1, -1),
        deterministic=False,
    ):
        super().__init__()
        assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
        assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)
        self.window_size = window_size
        self.deterministic = deterministic

    def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value.
                If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
                If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
                (total, 3, H, D), where total is the sum of the sequence lengths in the batch.
            causal: if passed, will override self.causal
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into qkv.
            max_seqlen: int. Maximum sequence length in the batch.
        Returns:
        --------
            out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
                else (B, S, H, D).
        """
        assert qkv.dtype in [torch.float16, torch.bfloat16]
        assert qkv.is_cuda
        causal = self.causal if causal is None else causal
        unpadded = cu_seqlens is not None

        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
            return flash_attn_varlen_qkvpacked_func(
                qkv,
                cu_seqlens,
                max_seqlen,
                self.drop.p if self.training else 0.0,
                softmax_scale=self.softmax_scale,
                causal=causal,
                alibi_slopes=None,
                window_size=self.window_size,
                deterministic=self.deterministic,
            )
        else:
            return flash_attn_qkvpacked_func(
                qkv,
                self.drop.p if self.training else 0.0,
                softmax_scale=self.softmax_scale,
                causal=causal,
                alibi_slopes=None,
                window_size=self.window_size,
                deterministic=self.deterministic,
            )


class FlashCrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """

    def __init__(
        self,
        causal=False,
        softmax_scale=None,
        attention_dropout=0.0,
        window_size=(-1, -1),
        deterministic=False,
    ):
        super().__init__()
        assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
        assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)
        self.window_size = window_size
        self.deterministic = deterministic

    def forward(
        self,
        q,
        kv,
        causal=None,
        cu_seqlens=None,
        max_seqlen=None,
        cu_seqlens_k=None,
        max_seqlen_k=None,
    ):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
            kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
            causal: if passed, will override self.causal
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into q.
            max_seqlen: int. Maximum sequence length in the batch of q.
            cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into kv.
            max_seqlen_k: int. Maximum sequence length in the batch of k and v.
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda and kv.is_cuda
        causal = self.causal if causal is None else causal
        unpadded = cu_seqlens is not None

        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
            assert cu_seqlens_k is not None
            assert cu_seqlens_k.dtype == torch.int32
            assert max_seqlen_k is not None
            assert isinstance(max_seqlen, int)
            return flash_attn_varlen_kvpacked_func(
                q,
                kv,
                cu_seqlens,
                cu_seqlens_k,
                max_seqlen,
                max_seqlen_k,
                self.drop.p if self.training else 0.0,
                softmax_scale=self.softmax_scale,
                causal=causal,
                alibi_slopes=None,
                window_size=self.window_size,
                deterministic=self.deterministic,
            )
        else:
            batch_size, seqlen_q = q.shape[0], q.shape[1]
            seqlen_k = kv.shape[1]
            assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
            return flash_attn_kvpacked_func(
                q,
                kv,
                self.drop.p if self.training else 0.0,
                causal=causal,
                softmax_scale=self.softmax_scale,
                alibi_slopes=None,
                window_size=self.window_size,
                deterministic=self.deterministic,
            )


class SelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """

    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    def forward(self, qkv, causal=None, key_padding_mask=None):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
            causal: if passed, will override self.causal
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, S)
        """
        batch_size, seqlen = qkv.shape[0], qkv.shape[1]
        causal = self.causal if causal is None else causal
        q, k, v = qkv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
        if key_padding_mask is not None:
            padding_mask = torch.full(
                (batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
            )
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
        if causal:
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
            causal_mask = torch.triu(
                torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
            )
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
        attention_drop = self.drop(attention)
        output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
        return output


class CrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """

    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    def forward(self, q, kv, causal=None, key_padding_mask=None):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
            kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
            causal: if passed, will override self.causal
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, Sk)
        """
        batch_size, seqlen_q = q.shape[0], q.shape[1]
        causal = self.causal if causal is None else causal
        seqlen_k = kv.shape[1]
        assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
        if kv.shape[3] != q.shape[2]:  # MQA/GQA
            kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
        k, v = kv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
        if key_padding_mask is not None:
            padding_mask = torch.full(
                (batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device
            )
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
        if causal:
            # causal mask needs to take into account the difference between seqlen_q and seqlen_k
            row_idx = rearrange(
                torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
            )
            col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long)
            sk = (
                seqlen_k
                if key_padding_mask is None
                else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
            )
            causal_mask = col_idx > row_idx + sk - seqlen_q
            scores = scores.masked_fill(causal_mask, -10000.0)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
        attention_drop = self.drop(attention)
        output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
        return output


class LinearResidual(nn.Linear):
    """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return super().forward(input), input


def _update_kv_cache(kv, inference_params, layer_idx):
    """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
    # Pre-allocate memory for key-values for inference.
    num_heads, head_dim = kv.shape[-2:]
    if layer_idx not in inference_params.key_value_memory_dict:
        kv_cache = torch.empty(
            inference_params.max_batch_size,
            inference_params.max_seqlen,
            2,
            num_heads,
            head_dim,
            dtype=kv.dtype,
            device=kv.device,
        )
        inference_params.key_value_memory_dict[layer_idx] = kv_cache
    else:
        kv_cache = inference_params.key_value_memory_dict[layer_idx]
    # Adjust key and value for inference
    batch_start = inference_params.batch_size_offset
    batch_end = batch_start + kv.shape[0]
    sequence_start = inference_params.seqlen_offset
    sequence_end = sequence_start + kv.shape[1]
    assert batch_end <= kv_cache.shape[0]
    assert sequence_end <= kv_cache.shape[1]
    assert kv_cache is not None
    kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
    return kv_cache[batch_start:batch_end, :sequence_end, ...]


class MHA(nn.Module):
    """Multi-head self-attention and cross-attention"""

    def __init__(
        self,
        embed_dim,
        num_heads,
        num_heads_kv=None,
        cross_attn=False,
        qkv_proj_bias=True,
        out_proj_bias=True,
        dropout=0.0,
        softmax_scale=None,
        causal=False,
        layer_idx=None,
        dwconv=False,
        window_size=(-1, -1),
        fused_bias_fc=False,
        use_flash_attn=False,
        return_residual=False,
        checkpointing=False,
        device=None,
        dtype=None,
    ) -> None:
        """
        num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
        return_residual: whether to return the input x along with the output. This is for
            performance reason: for post-norm architecture, returning the input allows us
            to fuse the backward of nn.Linear with the residual connection.
        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.embed_dim = embed_dim
        self.cross_attn = cross_attn
        self.causal = causal
        self.layer_idx = layer_idx
        self.dwconv = dwconv
        self.use_flash_attn = use_flash_attn
        self.return_residual = return_residual
        self.checkpointing = checkpointing

        if window_size != (-1, -1):
            assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn"

        self.num_heads = num_heads
        self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
        assert (
            self.num_heads % self.num_heads_kv == 0
        ), "num_heads must be divisible by num_heads_kv"
        assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
        self.head_dim = self.embed_dim // num_heads
        qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
        kv_dim = 2 * self.head_dim * self.num_heads_kv

        if fused_bias_fc and FusedDense is None:
            raise ImportError("fused_dense is not installed")
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
        linear_resid_cls = (
            LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
        )
        wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
        inner_attn_cls = (
            partial(FlashSelfAttention, window_size=window_size)
            if use_flash_attn
            else SelfAttention
        )
        inner_cross_attn_cls = (
            partial(FlashCrossAttention, window_size=window_size)
            if use_flash_attn
            else CrossAttention
        )
        if not self.cross_attn:
            self.Wqkv = wqkv_cls(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
        else:
            self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
            self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
        if self.dwconv:
            if self.num_heads_kv == self.num_heads:
                self.dwconv_qkv = nn.Conv1d(
                    qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
                )
            else:
                self.dwconv_q = nn.Conv1d(
                    embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
                )
                self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim)
        self.inner_attn = inner_attn_cls(
            causal=causal,
            softmax_scale=softmax_scale,
            attention_dropout=dropout,
        )
        self.inner_cross_attn = inner_cross_attn_cls(
            causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
        )
        self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)

    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
        dtype = self.out_proj.weight.dtype if dtype is None else dtype
        device = self.out_proj.weight.device
        return torch.empty(
            batch_size,
            max_seqlen,
            2,
            self.num_heads_kv,
            self.head_dim,
            dtype=dtype,
            device=device,
        )

    def _update_kv_cache(self, kv, inference_params):
        """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
        assert not self.dwconv, "Generation does not support dwconv yet"
        assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
        return _update_kv_cache(kv, inference_params, self.layer_idx)

    def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
        """
        Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
        q: (batch_size, seqlen_q, nheads, head_dim)
        kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
        """
        assert inference_params is not None and inference_params.seqlen_offset > 0
        assert self.use_flash_attn
        batch = q.shape[0]
        kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
        cache_seqlens = (
            inference_params.lengths_per_sample[:batch]
            if inference_params.lengths_per_sample is not None
            else inference_params.seqlen_offset
        )
        context = flash_attn_with_kvcache(
            q,
            kv_cache[:, :, 0],
            kv_cache[:, :, 1],
            kv[:, :, 0],
            kv[:, :, 1],
            cache_seqlens=cache_seqlens,
            softmax_scale=self.inner_cross_attn.softmax_scale,
            causal=self.inner_cross_attn.causal,
            rotary_interleaved=False,
            alibi_slopes=None,
        )
        return context

    def _update_kvcache_attention(self, q, kv, inference_params):
        """Write kv to inference_params, then do attention"""
        if (
            inference_params.seqlen_offset == 0
            or flash_attn_with_kvcache is None
            or not self.use_flash_attn
        ):
            # TODO: this only uses seqlen_offset and not lengths_per_sample.
            kv = self._update_kv_cache(kv, inference_params)
            return self.inner_cross_attn(q, kv)
        else:
            batch = q.shape[0]
            kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
            cache_seqlens = (
                inference_params.lengths_per_sample[:batch]
                if inference_params.lengths_per_sample is not None
                else inference_params.seqlen_offset
            )
            return flash_attn_with_kvcache(
                q,
                kv_cache[:, :, 0],
                kv_cache[:, :, 1],
                kv[:, :, 0],
                kv[:, :, 1],
                cache_seqlens=cache_seqlens,
                softmax_scale=self.inner_cross_attn.softmax_scale,
                causal=self.inner_cross_attn.causal,
                alibi_slopes=None,
            )

    def forward(
        self,
        x,
        x_kv=None,
        key_padding_mask=None,
        cu_seqlens=None,
        max_seqlen=None,
        mixer_subset=None,
        inference_params=None,
        **kwargs,
    ):
        """
        Arguments:
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
                cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
                is the is the sum of the sequence lengths in the batch.
            x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into x. Only applicable when using
                FlashAttention.
            max_seqlen: int. Maximum sequence length in the batch.
            key_padding_mask: boolean mask, True means to keep, False means to mask out.
                (batch, seqlen). Only applicable when not using FlashAttention.
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
        """
        if cu_seqlens is not None:
            assert max_seqlen is not None
            assert key_padding_mask is None
            assert self.use_flash_attn
            assert not self.dwconv
        if key_padding_mask is not None:
            assert cu_seqlens is None
            assert max_seqlen is None
            assert not self.use_flash_attn
        if inference_params is not None:
            assert key_padding_mask is None
            assert cu_seqlens is None and max_seqlen is None
            assert not self.dwconv

        kwargs = (
            {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
            if self.use_flash_attn
            else {"key_padding_mask": key_padding_mask, **kwargs}
        )
        seqlen_offset = (
            0
            if inference_params is None
            else (
                inference_params.lengths_per_sample
                if inference_params.lengths_per_sample is not None
                else inference_params.seqlen_offset
            )
        )
        rotary_max_seqlen = (
            inference_params.max_sequence_len if inference_params is not None else max_seqlen
        )
        batch, seqlen = x.shape[:2]
        if not self.cross_attn and self.num_heads_kv == self.num_heads:
            assert x_kv is None and mixer_subset is None
            if not self.return_residual:
                qkv = self.Wqkv(x)
            else:
                qkv, x = self.Wqkv(x)
            if self.dwconv:
                qkv = rearrange(
                    self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
                ).contiguous()
            qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
            if (
                inference_params is None
                or inference_params.seqlen_offset == 0
                or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
                or not self.use_flash_attn
            ):
                if inference_params is None:
                    if not self.checkpointing:
                        context = self.inner_attn(qkv, **kwargs)
                    else:
                        context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
                else:
                    context = self._update_kvcache_attention(
                        qkv[:, :, 0], qkv[:, :, 1:], inference_params
                    )
            else:
                context = self._apply_rotary_update_kvcache_attention(
                    qkv[:, :, 0], qkv[:, :, 1:], inference_params
                )
        else:
            if self.cross_attn:
                if not self.return_residual:
                    q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
                    kv = self.Wkv(x_kv if x_kv is not None else x)
                else:
                    if x_kv is not None:
                        kv, x_kv = self.Wkv(x_kv)
                    else:
                        kv, x = self.Wkv(x)
                    q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
            else:
                assert self.num_heads_kv != self.num_heads
                if not self.return_residual:
                    qkv = self.Wqkv(x)
                else:
                    qkv, x = self.Wqkv(x)
                q = qkv[..., : self.num_heads * self.head_dim]
                kv = qkv[..., self.num_heads * self.head_dim :]
            q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
            kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
            if self.dwconv:
                q = rearrange(
                    self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
                ).contiguous()
                kv = rearrange(
                    self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
                ).contiguous()
            if (
                inference_params is None
                or inference_params.seqlen_offset == 0
                or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
                or not self.use_flash_attn
            ):
                if inference_params is None:
                    if not self.checkpointing:
                        context = self.inner_cross_attn(q, kv, **kwargs)
                    else:
                        context = torch.utils.checkpoint.checkpoint(
                            self.inner_cross_attn, q, kv, **kwargs
                        )
                else:
                    context = self._update_kvcache_attention(q, kv, inference_params)
            else:
                context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
        out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
        return out if not self.return_residual else (out, x)