File size: 2,218 Bytes
2e3ebcb
13c4251
2e3ebcb
95b4916
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f960115
79c3c93
807ba34
13c4251
 
2e3ebcb
 
 
 
6060bad
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed05aa
 
79c3c93
9db6c6f
13c4251
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from transformers import PretrainedConfig
import torch

class XLMRobertaFlashConfig(PretrainedConfig):
    def __init__(
            self,
            vocab_size=30522,
            hidden_size=768,
            num_hidden_layers=12,
            num_attention_heads=12,
            intermediate_size=3072,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=2,
            initializer_range=0.02,
            layer_norm_eps=1e-12,
            pad_token_id=1,
            bos_token_id=0,
            eos_token_id=2,
            position_embedding_type="absolute",
            use_cache=True,
            classifier_dropout=None,
            num_loras=1,
            load_trained_adapters=False,
            use_flash_attn=True,
            torch_dtype=None,
            emb_pooler=None,
            **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)


        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.use_cache = use_cache
        self.classifier_dropout = classifier_dropout
        self.num_loras = num_loras
        self.load_trained_adapters = load_trained_adapters
        self.use_flash_attn = use_flash_attn
        self.emb_pooler = emb_pooler
        if torch_dtype and hasattr(torch, torch_dtype) and type(getattr(torch, torch_dtype)) is torch.dtype:
            self.torch_dtype = getattr(torch, torch_dtype)
        else:
            self.torch_dtype = torch_dtype