|
import math |
|
import os |
|
import warnings |
|
from functools import partial |
|
from typing import Iterator, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.utils.parametrize as parametrize |
|
from torch import nn |
|
from torch.nn import Parameter |
|
from torch.nn import functional as F |
|
from transformers import PretrainedConfig |
|
|
|
from .modeling_xlm_roberta import XLMRobertaFlashConfig, XLMRobertaModel, XLMRobertaPreTrainedModel |
|
|
|
|
|
def initialized_weights( |
|
shape: Tuple[int], num_adaptations: int, init: str = "kaiming" |
|
) -> torch.Tensor: |
|
weight_data = [] |
|
for _ in range(num_adaptations): |
|
new_adaption = torch.zeros(shape) |
|
if init == "kaiming": |
|
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5)) |
|
elif init == "normal": |
|
nn.init.normal_(new_adaption) |
|
else: |
|
raise NotImplementedError |
|
weight_data.append(new_adaption) |
|
return torch.stack(weight_data, dim=0) |
|
|
|
|
|
class LoRAParametrization(nn.Module): |
|
""" |
|
This LoRA implementation was inspired by https://github.com/cccntu/minLoRA |
|
The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy |
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software |
|
and associated documentation files (the "Software"), to deal in the Software without restriction, |
|
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, |
|
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, |
|
subject to the following conditions: |
|
The above copyright notice and this permission notice shall be included in all copies or substantial |
|
portions of the Software. |
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT |
|
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
|
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
|
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
|
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
fan_in: int, |
|
fan_out: int, |
|
layer_type: str = "linear", |
|
num_adaptations: int = 1, |
|
rank: int = 4, |
|
dropout_p: float = 0.0, |
|
alpha: float = 1, |
|
): |
|
super().__init__() |
|
|
|
|
|
fan_in_fan_out = layer_type == "embedding" |
|
self.swap = (lambda x: (x[1], x[0])) if fan_in_fan_out else (lambda x: x) |
|
|
|
if layer_type == "linear": |
|
self.lora_A = nn.Parameter( |
|
initialized_weights((rank, fan_in), num_adaptations, init="kaiming") |
|
) |
|
self.lora_B = nn.Parameter(torch.zeros((num_adaptations, fan_out, rank))) |
|
elif layer_type == "embedding": |
|
self.lora_A = nn.Parameter(torch.zeros((num_adaptations, fan_in, rank))) |
|
self.lora_B = nn.Parameter( |
|
initialized_weights( |
|
(rank, fan_out), num_adaptations=num_adaptations, init="normal" |
|
) |
|
) |
|
else: |
|
raise NotImplementedError |
|
|
|
self.lora_alpha, self.rank = alpha, rank |
|
self.scaling = alpha / rank |
|
self.lora_dropout = nn.Dropout(p=dropout_p) if dropout_p > 0 else lambda x: x |
|
self.dropout_fn = self._dropout if dropout_p > 0 else lambda x: x |
|
self.register_buffer( |
|
"lora_dropout_mask", |
|
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype), |
|
persistent=False, |
|
) |
|
|
|
def _dropout(self, A): |
|
|
|
return A * self.lora_dropout(self.lora_dropout_mask) |
|
|
|
def lora_forward(self, X, current_task): |
|
return ( |
|
X |
|
+ torch.matmul( |
|
*self.swap( |
|
( |
|
self.lora_B[current_task], |
|
self.dropout_fn(self.lora_A[current_task]), |
|
) |
|
) |
|
).view(X.shape) |
|
* self.scaling |
|
) |
|
|
|
def forward(self, X): |
|
return X |
|
|
|
@classmethod |
|
def from_linear( |
|
cls, |
|
layer: nn.Module, |
|
num_adaptations: int, |
|
rank: int, |
|
dropout_p: float, |
|
alpha: float, |
|
): |
|
assert isinstance(layer, nn.Linear) |
|
fan_out, fan_in = layer.weight.shape |
|
return cls( |
|
fan_in, |
|
fan_out, |
|
num_adaptations=num_adaptations, |
|
layer_type="linear", |
|
rank=rank, |
|
dropout_p=dropout_p, |
|
alpha=alpha, |
|
) |
|
|
|
@classmethod |
|
def from_embedding( |
|
cls, |
|
layer: nn.Module, |
|
num_adaptations: int, |
|
rank: int, |
|
dropout_p: float, |
|
alpha: float, |
|
): |
|
assert isinstance(layer, nn.Embedding) |
|
fan_in, fan_out = layer.weight.shape |
|
return cls( |
|
fan_in, |
|
fan_out, |
|
num_adaptations=num_adaptations, |
|
layer_type="embedding", |
|
rank=rank, |
|
dropout_p=dropout_p, |
|
alpha=alpha, |
|
) |
|
|
|
@classmethod |
|
def add_to_layer( |
|
cls, |
|
layer: nn.Module, |
|
num_adaptations: int, |
|
rank: int, |
|
dropout_p: float, |
|
alpha: float, |
|
adaptation_map: dict, |
|
): |
|
if isinstance(layer, nn.Linear): |
|
parametrize.register_parametrization( |
|
layer, |
|
"weight", |
|
cls.from_linear( |
|
layer, |
|
num_adaptations=num_adaptations, |
|
rank=rank, |
|
dropout_p=dropout_p, |
|
alpha=alpha, |
|
), |
|
) |
|
|
|
def new_forward(self, input, task_type, residual=False): |
|
task_idx = adaptation_map[task_type] if task_type else None |
|
if task_idx is not None: |
|
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx) |
|
else: |
|
weights = self.weight |
|
|
|
out = F.linear(input, weights, self.bias) |
|
|
|
if residual: |
|
return out, input |
|
return out |
|
|
|
layer.forward = new_forward.__get__(layer, layer.__class__) |
|
|
|
elif isinstance(layer, nn.Embedding): |
|
parametrize.register_parametrization( |
|
layer, |
|
"weight", |
|
cls.from_embedding( |
|
layer, |
|
num_adaptations=num_adaptations, |
|
rank=rank, |
|
dropout_p=dropout_p, |
|
alpha=alpha, |
|
), |
|
) |
|
|
|
def new_forward(self, input, task_type): |
|
task_idx = adaptation_map[task_type] if task_type else None |
|
if task_idx is not None: |
|
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx) |
|
else: |
|
weights = self.weight |
|
|
|
out = F.embedding( |
|
input, weights, self.padding_idx, self.max_norm, |
|
self.norm_type, self.scale_grad_by_freq, self.sparse) |
|
|
|
return out |
|
|
|
layer.forward = new_forward.__get__(layer, layer.__class__) |
|
|
|
|
|
class XLMRobertaLoRA(XLMRobertaPreTrainedModel): |
|
def __init__( |
|
self, |
|
config: XLMRobertaFlashConfig, |
|
roberta: Optional[XLMRobertaModel] = None |
|
): |
|
super().__init__(config) |
|
if roberta is None: |
|
self.roberta = XLMRobertaModel(config) |
|
else: |
|
self.roberta = roberta |
|
|
|
self._lora_adaptations = config.lora_adaptations |
|
if ( |
|
not isinstance(self._lora_adaptations, list) |
|
or len(self._lora_adaptations) < 1 |
|
): |
|
raise ValueError( |
|
f'`lora_adaptations` must be a list and contain at least one element' |
|
) |
|
self._lora_prompts = config.lora_prompts |
|
if ( |
|
not isinstance(self._lora_prompts, dict) |
|
or len(self._lora_prompts) != len(self._lora_adaptations) |
|
or not all([v in self._lora_adaptations for v in self._lora_prompts.keys()]) |
|
): |
|
raise ValueError( |
|
f'`lora_prompts` must be a dict and contain the same number of elements ' |
|
f'as `lora_adaptations` with all keys in `lora_prompts` present in `lora_adaptations`.' |
|
) |
|
self._adaptation_map = { |
|
name: idx for idx, name in enumerate(self._lora_adaptations) |
|
} |
|
self._rank = config.lora_rank |
|
self._dropout_p = config.lora_dropout_p |
|
self._alpha = config.lora_alpha |
|
self._register_lora( |
|
num_adaptations=len(self._lora_adaptations), |
|
rank=self._rank, |
|
dropout_p=self._dropout_p, |
|
alpha=self._alpha, |
|
) |
|
self.main_params_trainable = config.lora_main_params_trainable |
|
|
|
|
|
@property |
|
def rotary_emb_base(self): |
|
return self.roberta.rotary_emb_base |
|
|
|
@rotary_emb_base.setter |
|
def rotary_emb_base(self, base): |
|
self.roberta.rotary_emb_base = base |
|
|
|
@property |
|
def main_params_trainable(self): |
|
return self._main_params_trainable |
|
|
|
@main_params_trainable.setter |
|
def main_params_trainable(self, val: bool): |
|
"""Whether the main parameters (i.e. those that are not LoRA) should be trainable. |
|
This method sets the `requires_grad_` attribute of the main weights |
|
and controls which parameters are returned in `self.parameters()`. |
|
:param val: Whether or not to make the parameters trainable. |
|
:return: None |
|
""" |
|
self._main_params_trainable = val |
|
for name, param in super().named_parameters(): |
|
if "lora" not in name: |
|
param.requires_grad_(val) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
use_safetensors: bool = None, |
|
**kwargs, |
|
): |
|
config = XLMRobertaFlashConfig.from_pretrained( |
|
pretrained_model_name_or_path, *model_args, **kwargs |
|
) |
|
|
|
if config.load_trained_adapters: |
|
return super().from_pretrained( |
|
pretrained_model_name_or_path, *model_args, **kwargs |
|
) |
|
else: |
|
roberta = XLMRobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
return cls(config, roberta=roberta) |
|
|
|
def _register_lora(self, num_adaptations, rank, dropout_p, alpha): |
|
self.apply( |
|
partial( |
|
LoRAParametrization.add_to_layer, |
|
num_adaptations=num_adaptations, |
|
rank=rank, |
|
dropout_p=dropout_p, |
|
alpha=alpha, |
|
adaptation_map=self._adaptation_map, |
|
) |
|
) |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.roberta(*args, **kwargs) |
|
|
|
def parameters(self, recurse: bool = True) -> Iterator[Parameter]: |
|
for _, param in self.named_parameters(recurse=recurse): |
|
yield param |
|
|
|
def named_parameters( |
|
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True |
|
) -> Iterator[Tuple[str, Parameter]]: |
|
for name, param in super().named_parameters( |
|
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate |
|
): |
|
if "lora" in name or self.main_params_trainable: |
|
yield name, param |
|
|
|
@torch.inference_mode() |
|
def encode( |
|
self, |
|
*args, |
|
task_type: Optional[str] = None, |
|
**kwargs, |
|
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]: |
|
""" |
|
Computes sentence embeddings |
|
|
|
task_type(`str`, *optional*, defaults to `None`): |
|
Specifies the task for which the encoding is intended. If `task_type` is not provide, |
|
all LoRA adapters are disabled, and the model reverts to its original, |
|
general-purpose weights. |
|
""" |
|
if task_type and task_type not in self._lora_adaptations: |
|
raise ValueError( |
|
f"Unsupported task '{task_type}'. " |
|
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}." |
|
f"Alternatively, don't pass the `task_type` argument to disable LoRA." |
|
) |
|
|
|
return self.roberta.encode(*args, task_type=task_type, **kwargs) |
|
|