michael-guenther
commited on
Commit
·
d10586f
1
Parent(s):
290e593
add encode function
Browse files- modeling_xlm_roberta.py +159 -1
modeling_xlm_roberta.py
CHANGED
@@ -13,6 +13,7 @@ import re
|
|
13 |
from collections import OrderedDict
|
14 |
from collections.abc import Sequence
|
15 |
from functools import partial
|
|
|
16 |
|
17 |
import torch
|
18 |
import torch.nn as nn
|
@@ -29,7 +30,7 @@ from transformers.models.bert.modeling_bert import (
|
|
29 |
BertForPreTrainingOutput,
|
30 |
)
|
31 |
|
32 |
-
from typing import Optional, Tuple, Union
|
33 |
|
34 |
from .xlm_padding import (
|
35 |
index_first_axis,
|
@@ -61,6 +62,11 @@ try:
|
|
61 |
except ImportError:
|
62 |
CrossEntropyLoss = None
|
63 |
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
logger = logging.getLogger(__name__)
|
66 |
|
@@ -422,6 +428,158 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
422 |
|
423 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
424 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
def forward(
|
426 |
self,
|
427 |
input_ids,
|
|
|
13 |
from collections import OrderedDict
|
14 |
from collections.abc import Sequence
|
15 |
from functools import partial
|
16 |
+
import numpy as np
|
17 |
|
18 |
import torch
|
19 |
import torch.nn as nn
|
|
|
30 |
BertForPreTrainingOutput,
|
31 |
)
|
32 |
|
33 |
+
from typing import List, Optional, Tuple, Union
|
34 |
|
35 |
from .xlm_padding import (
|
36 |
index_first_axis,
|
|
|
62 |
except ImportError:
|
63 |
CrossEntropyLoss = None
|
64 |
|
65 |
+
try:
|
66 |
+
from tqdm.autonotebook import trange
|
67 |
+
except ImportError:
|
68 |
+
trange = None
|
69 |
+
|
70 |
|
71 |
logger = logging.getLogger(__name__)
|
72 |
|
|
|
428 |
|
429 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
430 |
|
431 |
+
|
432 |
+
@torch.inference_mode()
|
433 |
+
def encode(
|
434 |
+
self: 'XLMRobertaModel',
|
435 |
+
sentences: Union[str, List[str]],
|
436 |
+
batch_size: int = 32,
|
437 |
+
show_progress_bar: Optional[bool] = None,
|
438 |
+
output_value: str = 'sentence_embedding',
|
439 |
+
convert_to_numpy: bool = True,
|
440 |
+
convert_to_tensor: bool = False,
|
441 |
+
device: Optional[torch.device] = None,
|
442 |
+
normalize_embeddings: bool = False,
|
443 |
+
**tokenizer_kwargs,
|
444 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
445 |
+
"""
|
446 |
+
Computes sentence embeddings
|
447 |
+
Args:
|
448 |
+
sentences(`str` or `List[str]`):
|
449 |
+
Sentence or sentences to be encoded
|
450 |
+
batch_size(`int`, *optional*, defaults to 32):
|
451 |
+
Batch size for the computation
|
452 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
453 |
+
Show a progress bar when encoding sentences.
|
454 |
+
If set to None, progress bar is only shown when
|
455 |
+
`logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
|
456 |
+
output_value(`str`, *optional*, defaults to 'sentence_embedding'):
|
457 |
+
Default sentence_embedding, to get sentence embeddings.
|
458 |
+
Can be set to token_embeddings to get wordpiece token embeddings.
|
459 |
+
Set to None, to get all output values
|
460 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
461 |
+
If true, the output is a list of numpy vectors.
|
462 |
+
Else, it is a list of pytorch tensors.
|
463 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
464 |
+
If true, you get one large tensor as return.
|
465 |
+
Overwrites any setting from convert_to_numpy
|
466 |
+
device(`torch.device`, *optional*, defaults to None):
|
467 |
+
Which torch.device to use for the computation
|
468 |
+
normalize_embeddings(`bool`, *optional*, defaults to False):
|
469 |
+
If set to true, returned vectors will have length 1. In that case, the
|
470 |
+
faster dot-product (util.dot_score) instead of cosine similarity can
|
471 |
+
be used.
|
472 |
+
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
473 |
+
Keyword arguments for the tokenizer
|
474 |
+
Returns:
|
475 |
+
By default, a list of tensors is returned.
|
476 |
+
If convert_to_tensor, a stacked tensor is returned.
|
477 |
+
If convert_to_numpy, a numpy matrix is returned.
|
478 |
+
"""
|
479 |
+
from transformers import AutoTokenizer
|
480 |
+
|
481 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
482 |
+
self.name_or_path, trust_remote_code=True
|
483 |
+
)
|
484 |
+
|
485 |
+
is_training = self.training
|
486 |
+
self.eval()
|
487 |
+
|
488 |
+
if show_progress_bar is None:
|
489 |
+
show_progress_bar = (
|
490 |
+
logger.getEffectiveLevel() == logging.INFO
|
491 |
+
or logger.getEffectiveLevel() == logging.DEBUG
|
492 |
+
)
|
493 |
+
|
494 |
+
if convert_to_tensor:
|
495 |
+
convert_to_numpy = False
|
496 |
+
|
497 |
+
if output_value != 'sentence_embedding':
|
498 |
+
convert_to_tensor = False
|
499 |
+
convert_to_numpy = False
|
500 |
+
|
501 |
+
input_was_string = False
|
502 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
|
503 |
+
sentences = [sentences]
|
504 |
+
input_was_string = True
|
505 |
+
|
506 |
+
if device is not None:
|
507 |
+
self.to(device)
|
508 |
+
|
509 |
+
permutation = np.argsort([-len(i) for i in sentences])
|
510 |
+
inverse_permutation = np.argsort(permutation)
|
511 |
+
sentences = [sentences[idx] for idx in permutation]
|
512 |
+
|
513 |
+
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
|
514 |
+
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get(
|
515 |
+
'max_length', self.tokenizer.init_kwargs.get('model_max_length', 8192)
|
516 |
+
)
|
517 |
+
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
|
518 |
+
|
519 |
+
all_embeddings = []
|
520 |
+
|
521 |
+
if trange is not None:
|
522 |
+
range_iter = trange(
|
523 |
+
0,
|
524 |
+
len(sentences),
|
525 |
+
batch_size,
|
526 |
+
desc="Encoding",
|
527 |
+
disable=not show_progress_bar,
|
528 |
+
)
|
529 |
+
else:
|
530 |
+
range_iter = range(0, len(sentences), batch_size)
|
531 |
+
|
532 |
+
for i in range_iter:
|
533 |
+
encoded_input = self.tokenizer(
|
534 |
+
sentences[i : i + batch_size],
|
535 |
+
return_tensors='pt',
|
536 |
+
**tokenizer_kwargs,
|
537 |
+
).to(self.device)
|
538 |
+
token_embs = self.forward(**encoded_input)[0]
|
539 |
+
|
540 |
+
# Accumulate in fp32 to avoid overflow
|
541 |
+
token_embs = token_embs.float()
|
542 |
+
|
543 |
+
if output_value == 'token_embeddings':
|
544 |
+
raise NotImplementedError
|
545 |
+
elif output_value is None:
|
546 |
+
raise NotImplementedError
|
547 |
+
else:
|
548 |
+
embeddings = self.mean_pooling(
|
549 |
+
token_embs, encoded_input['attention_mask']
|
550 |
+
)
|
551 |
+
|
552 |
+
if normalize_embeddings:
|
553 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
554 |
+
|
555 |
+
if convert_to_numpy:
|
556 |
+
embeddings = embeddings.cpu()
|
557 |
+
all_embeddings.extend(embeddings)
|
558 |
+
|
559 |
+
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
|
560 |
+
|
561 |
+
if convert_to_tensor:
|
562 |
+
all_embeddings = torch.stack(all_embeddings)
|
563 |
+
elif convert_to_numpy:
|
564 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
565 |
+
|
566 |
+
if input_was_string:
|
567 |
+
all_embeddings = all_embeddings[0]
|
568 |
+
|
569 |
+
self.train(is_training)
|
570 |
+
return all_embeddings
|
571 |
+
|
572 |
+
def mean_pooling(
|
573 |
+
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
574 |
+
):
|
575 |
+
input_mask_expanded = (
|
576 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
577 |
+
)
|
578 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
579 |
+
input_mask_expanded.sum(1), min=1e-9
|
580 |
+
)
|
581 |
+
|
582 |
+
|
583 |
def forward(
|
584 |
self,
|
585 |
input_ids,
|