# Copyright (c) 2023, Tri Dao. # Adapted from https://github.com/Dao-AILab/flash-attention/pull/556 import math from functools import partial import torch import torch.nn as nn from einops import rearrange, repeat try: from flash_attn import ( flash_attn_kvpacked_func, flash_attn_qkvpacked_func, flash_attn_varlen_kvpacked_func, flash_attn_varlen_qkvpacked_func, flash_attn_with_kvcache, ) except ImportError: flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None flash_attn_with_kvcache = None try: from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear except ImportError: FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None from .rotary import RotaryEmbedding # From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742 def get_alibi_slopes(nheads): def get_slopes_power_of_2(nheads): start = 2 ** (-(2 ** -(math.log2(nheads) - 3))) ratio = start return [start * ratio**i for i in range(nheads)] if math.log2(nheads).is_integer(): return get_slopes_power_of_2(nheads) else: closest_power_of_2 = 2 ** math.floor(math.log2(nheads)) return ( get_slopes_power_of_2(closest_power_of_2) + get_alibi_slopes(2 * closest_power_of_2)[0::2][: nheads - closest_power_of_2] ) class FlashSelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__( self, causal=False, softmax_scale=None, attention_dropout=0.0, window_size=(-1, -1), alibi_slopes=None, deterministic=False, ): super().__init__() assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed" assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed" self.causal = causal self.softmax_scale = softmax_scale self.drop = nn.Dropout(attention_dropout) self.register_buffer("alibi_slopes", alibi_slopes, persistent=False) self.window_size = window_size self.deterministic = deterministic def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D). If cu_seqlens is not None and max_seqlen is not None, then qkv has shape (total, 3, H, D), where total is the sum of the sequence lengths in the batch. causal: if passed, will override self.causal cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen: int. Maximum sequence length in the batch. Returns: -------- out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None, else (B, S, H, D). """ assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda causal = self.causal if causal is None else causal unpadded = cu_seqlens is not None if self.alibi_slopes is not None: self.alibi_slopes = self.alibi_slopes.to(torch.float32) if unpadded: assert cu_seqlens.dtype == torch.int32 assert max_seqlen is not None assert isinstance(max_seqlen, int) return flash_attn_varlen_qkvpacked_func( qkv, cu_seqlens, max_seqlen, self.drop.p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal, alibi_slopes=self.alibi_slopes, window_size=self.window_size, deterministic=self.deterministic, ) else: return flash_attn_qkvpacked_func( qkv, self.drop.p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal, alibi_slopes=self.alibi_slopes, window_size=self.window_size, deterministic=self.deterministic, ) class FlashCrossAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__( self, causal=False, softmax_scale=None, attention_dropout=0.0, alibi_slopes=None, window_size=(-1, -1), deterministic=False, ): super().__init__() assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed" assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed" self.causal = causal self.softmax_scale = softmax_scale self.drop = nn.Dropout(attention_dropout) self.register_buffer("alibi_slopes", alibi_slopes, persistent=False) self.window_size = window_size self.deterministic = deterministic def forward( self, q, kv, causal=None, cu_seqlens=None, max_seqlen=None, cu_seqlens_k=None, max_seqlen_k=None, ): """Implements the multihead softmax attention. Arguments --------- q: The tensor containing the query. (B, Sq, H, D) kv: The tensor containing the key and value. (B, Sk, 2, H_k, D) causal: if passed, will override self.causal cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. max_seqlen: int. Maximum sequence length in the batch of q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_k: int. Maximum sequence length in the batch of k and v. """ assert q.dtype in [torch.float16, torch.bfloat16] assert q.is_cuda and kv.is_cuda causal = self.causal if causal is None else causal unpadded = cu_seqlens is not None if self.alibi_slopes is not None: self.alibi_slopes = self.alibi_slopes.to(torch.float32) if unpadded: assert cu_seqlens.dtype == torch.int32 assert max_seqlen is not None assert isinstance(max_seqlen, int) assert cu_seqlens_k is not None assert cu_seqlens_k.dtype == torch.int32 assert max_seqlen_k is not None assert isinstance(max_seqlen, int) return flash_attn_varlen_kvpacked_func( q, kv, cu_seqlens, cu_seqlens_k, max_seqlen, max_seqlen_k, self.drop.p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal, alibi_slopes=self.alibi_slopes, window_size=self.window_size, deterministic=self.deterministic, ) else: batch_size, seqlen_q = q.shape[0], q.shape[1] seqlen_k = kv.shape[1] assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3] return flash_attn_kvpacked_func( q, kv, self.drop.p if self.training else 0.0, causal=causal, softmax_scale=self.softmax_scale, alibi_slopes=self.alibi_slopes, window_size=self.window_size, deterministic=self.deterministic, ) class SelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.drop = nn.Dropout(attention_dropout) def forward(self, qkv, causal=None, key_padding_mask=None): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) causal: if passed, will override self.causal key_padding_mask: boolean mask to apply to the attention weights. True means to keep, False means to mask out. (B, S) """ batch_size, seqlen = qkv.shape[0], qkv.shape[1] causal = self.causal if causal is None else causal q, k, v = qkv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) if key_padding_mask is not None: padding_mask = torch.full( (batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device ) padding_mask.masked_fill_(key_padding_mask, 0.0) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu( torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1 ) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = self.drop(attention) output = torch.einsum("bhts,bshd->bthd", attention_drop, v) return output class CrossAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.drop = nn.Dropout(attention_dropout) def forward(self, q, kv, causal=None, key_padding_mask=None): """Implements the multihead softmax attention. Arguments --------- q: The tensor containing the query. (B, Sq, H, D) kv: The tensor containing the key and value. (B, Sk, 2, H_k, D) causal: if passed, will override self.causal key_padding_mask: boolean mask to apply to the attention weights. True means to keep, False means to mask out. (B, Sk) """ batch_size, seqlen_q = q.shape[0], q.shape[1] causal = self.causal if causal is None else causal seqlen_k = kv.shape[1] assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3] if kv.shape[3] != q.shape[2]: # MQA/GQA kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) k, v = kv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) if key_padding_mask is not None: padding_mask = torch.full( (batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device ) padding_mask.masked_fill_(key_padding_mask, 0.0) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") if causal: # causal mask needs to take into account the difference between seqlen_q and seqlen_k row_idx = rearrange( torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1" ) col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long) sk = ( seqlen_k if key_padding_mask is None else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1") ) causal_mask = col_idx > row_idx + sk - seqlen_q scores = scores.masked_fill(causal_mask, -10000.0) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = self.drop(attention) output = torch.einsum("bhts,bshd->bthd", attention_drop, v) return output class LinearResidual(nn.Linear): """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense.""" def forward(self, input: torch.Tensor) -> torch.Tensor: return super().forward(input), input def _update_kv_cache(kv, inference_params, layer_idx): """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" # Pre-allocate memory for key-values for inference. num_heads, head_dim = kv.shape[-2:] if layer_idx not in inference_params.key_value_memory_dict: kv_cache = torch.empty( inference_params.max_batch_size, inference_params.max_seqlen, 2, num_heads, head_dim, dtype=kv.dtype, device=kv.device, ) inference_params.key_value_memory_dict[layer_idx] = kv_cache else: kv_cache = inference_params.key_value_memory_dict[layer_idx] # Adjust key and value for inference batch_start = inference_params.batch_size_offset batch_end = batch_start + kv.shape[0] sequence_start = inference_params.seqlen_offset sequence_end = sequence_start + kv.shape[1] assert batch_end <= kv_cache.shape[0] assert sequence_end <= kv_cache.shape[1] assert kv_cache is not None kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv return kv_cache[batch_start:batch_end, :sequence_end, ...] class MHA(nn.Module): """Multi-head self-attention and cross-attention""" def __init__( self, embed_dim, num_heads, num_heads_kv=None, cross_attn=False, qkv_proj_bias=True, out_proj_bias=True, dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, dwconv=False, rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_scale_base=None, rotary_emb_interleaved=False, use_alibi=False, window_size=(-1, -1), fused_bias_fc=False, use_flash_attn=False, return_residual=False, checkpointing=False, device=None, dtype=None, ) -> None: """ num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads. return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.embed_dim = embed_dim self.cross_attn = cross_attn self.causal = causal self.layer_idx = layer_idx self.dwconv = dwconv self.rotary_emb_dim = rotary_emb_dim self.use_flash_attn = use_flash_attn self.return_residual = return_residual self.checkpointing = checkpointing if use_alibi: assert use_flash_attn, "ALiBi code path requires flash_attn" alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device) else: alibi_slopes = None if window_size != (-1, -1): assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn" self.num_heads = num_heads self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads assert ( self.num_heads % self.num_heads_kv == 0 ), "num_heads must be divisible by num_heads_kv" assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv) kv_dim = 2 * self.head_dim * self.num_heads_kv if self.rotary_emb_dim > 0: assert not cross_attn, "MHA with rotary embedding does not support cross-attention yet" assert RotaryEmbedding is not None, "rotary_emb is not installed" self.rotary_emb = RotaryEmbedding( self.rotary_emb_dim, base=rotary_emb_base, scale_base=rotary_emb_scale_base, interleaved=rotary_emb_interleaved, device=device, ) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense linear_resid_cls = ( LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True) ) wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls inner_attn_cls = ( partial(FlashSelfAttention, alibi_slopes=alibi_slopes, window_size=window_size) if use_flash_attn else SelfAttention ) inner_cross_attn_cls = ( partial(FlashCrossAttention, alibi_slopes=alibi_slopes, window_size=window_size) if use_flash_attn else CrossAttention ) if not self.cross_attn: self.Wqkv = wqkv_cls(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs) else: self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs) self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs) if self.dwconv: if self.num_heads_kv == self.num_heads: self.dwconv_qkv = nn.Conv1d( qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim ) else: self.dwconv_q = nn.Conv1d( embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim ) self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim) self.inner_attn = inner_attn_cls( causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout, ) self.inner_cross_attn = inner_cross_attn_cls( causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout ) self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs) def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None): dtype = self.out_proj.weight.dtype if dtype is None else dtype device = self.out_proj.weight.device return torch.empty( batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim, dtype=dtype, device=device, ) def _update_kv_cache(self, kv, inference_params): """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" assert not self.dwconv, "Generation does not support dwconv yet" assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" return _update_kv_cache(kv, inference_params, self.layer_idx) def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params): """ Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention. q: (batch_size, seqlen_q, nheads, head_dim) kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim) """ assert inference_params is not None and inference_params.seqlen_offset > 0 assert self.use_flash_attn if self.rotary_emb_dim > 0: assert self.rotary_emb.scale is None, "This code path does not support xPos" self.rotary_emb._update_cos_sin_cache( inference_params.max_seqlen, device=q.device, dtype=q.dtype ) rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached else: rotary_cos, rotary_sin = None, None batch = q.shape[0] kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch] cache_seqlens = ( inference_params.lengths_per_sample[:batch] if inference_params.lengths_per_sample is not None else inference_params.seqlen_offset ) alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None) context = flash_attn_with_kvcache( q, kv_cache[:, :, 0], kv_cache[:, :, 1], kv[:, :, 0], kv[:, :, 1], rotary_cos=rotary_cos, rotary_sin=rotary_sin, cache_seqlens=cache_seqlens, softmax_scale=self.inner_cross_attn.softmax_scale, causal=self.inner_cross_attn.causal, rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False, alibi_slopes=alibi_slopes, ) return context def _update_kvcache_attention(self, q, kv, inference_params): """Write kv to inference_params, then do attention""" if ( inference_params.seqlen_offset == 0 or flash_attn_with_kvcache is None or not self.use_flash_attn ): # TODO: this only uses seqlen_offset and not lengths_per_sample. kv = self._update_kv_cache(kv, inference_params) return self.inner_cross_attn(q, kv) else: batch = q.shape[0] kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch] cache_seqlens = ( inference_params.lengths_per_sample[:batch] if inference_params.lengths_per_sample is not None else inference_params.seqlen_offset ) alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None) return flash_attn_with_kvcache( q, kv_cache[:, :, 0], kv_cache[:, :, 1], kv[:, :, 0], kv[:, :, 1], cache_seqlens=cache_seqlens, softmax_scale=self.inner_cross_attn.softmax_scale, causal=self.inner_cross_attn.causal, alibi_slopes=alibi_slopes, ) def forward( self, x, x_kv=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None, mixer_subset=None, inference_params=None, cu_adapter_mask=None, **kwargs, ): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total is the is the sum of the sequence lengths in the batch. x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into x. Only applicable when using FlashAttention. max_seqlen: int. Maximum sequence length in the batch. key_padding_mask: boolean mask, True means to keep, False means to mask out. (batch, seqlen). Only applicable when not using FlashAttention. mixer_subset: for cross-attention only. If not None, will take a subset of x before applying the query projection. Useful for e.g., ViT where we only care about the CLS token in the last layer. inference_params: for generation. Adapted from Megatron-LM (and Apex) https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 """ if cu_seqlens is not None: assert max_seqlen is not None assert key_padding_mask is None assert self.use_flash_attn assert not self.dwconv if key_padding_mask is not None: assert cu_seqlens is None assert max_seqlen is None assert not self.use_flash_attn if inference_params is not None: assert key_padding_mask is None assert cu_seqlens is None and max_seqlen is None assert not self.dwconv kwargs = ( {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs} if self.use_flash_attn else {"key_padding_mask": key_padding_mask, **kwargs} ) seqlen_offset = ( 0 if inference_params is None else ( inference_params.lengths_per_sample if inference_params.lengths_per_sample is not None else inference_params.seqlen_offset ) ) rotary_max_seqlen = ( inference_params.max_sequence_len if inference_params is not None else max_seqlen ) batch, seqlen = x.shape[:2] if not self.cross_attn and self.num_heads_kv == self.num_heads: assert x_kv is None and mixer_subset is None if cu_adapter_mask is not None: unique_tasks = torch.unique(cu_adapter_mask) qkv_dtype = next(self.Wqkv.parameters()).dtype qkv = torch.empty(x.shape[0], self.Wqkv.out_features, dtype=qkv_dtype, device=x.device) for task_id in unique_tasks: task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0] task_tensor = x[task_indices] if not self.return_residual: task_qkv = self.Wqkv(task_tensor, task_id=task_id) else: task_qkv, _ = self.Wqkv(task_tensor, task_id=task_id, residual=True) qkv[task_indices] = task_qkv else: if not self.return_residual: qkv = self.Wqkv(x) else: if hasattr(self.Wqkv, 'parametrizations'): qkv, x = self.Wqkv(x, residual=True) else: qkv, x = self.Wqkv(x) if self.dwconv: qkv = rearrange( self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d" ).contiguous() qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) if ( inference_params is None or inference_params.seqlen_offset == 0 or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0) or not self.use_flash_attn ): if self.rotary_emb_dim > 0: qkv = self.rotary_emb( qkv, seqlen_offset=seqlen_offset, cu_seqlens=cu_seqlens, max_seqlen=rotary_max_seqlen, ) if inference_params is None: if not self.checkpointing: context = self.inner_attn(qkv, **kwargs) else: context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs) else: context = self._update_kvcache_attention( qkv[:, :, 0], qkv[:, :, 1:], inference_params ) else: context = self._apply_rotary_update_kvcache_attention( qkv[:, :, 0], qkv[:, :, 1:], inference_params ) else: if self.cross_attn: if not self.return_residual: q = self.Wq(x if mixer_subset is None else x[:, mixer_subset]) kv = self.Wkv(x_kv if x_kv is not None else x) else: if x_kv is not None: kv, x_kv = self.Wkv(x_kv) else: kv, x = self.Wkv(x) q = self.Wq(x if mixer_subset is None else x[:, mixer_subset]) else: assert self.num_heads_kv != self.num_heads if not self.return_residual: qkv = self.Wqkv(x) else: qkv, x = self.Wqkv(x) q = qkv[..., : self.num_heads * self.head_dim] kv = qkv[..., self.num_heads * self.head_dim :] q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) if self.dwconv: q = rearrange( self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d" ).contiguous() kv = rearrange( self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d" ).contiguous() if ( inference_params is None or inference_params.seqlen_offset == 0 or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0) or not self.use_flash_attn ): if self.rotary_emb_dim > 0: q, kv = self.rotary_emb( q, kv, seqlen_offset=seqlen_offset, cu_seqlens=cu_seqlens, max_seqlen=rotary_max_seqlen, ) if inference_params is None: if not self.checkpointing: context = self.inner_cross_attn(q, kv, **kwargs) else: context = torch.utils.checkpoint.checkpoint( self.inner_cross_attn, q, kv, **kwargs ) else: context = self._update_kvcache_attention(q, kv, inference_params) else: context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params) inp = rearrange(context, "... h d -> ... (h d)") if cu_adapter_mask is not None: unique_tasks = torch.unique(cu_adapter_mask) out_dtype = next(self.out_proj.parameters()).dtype out = torch.empty(inp.shape[0], self.out_proj.out_features, dtype=out_dtype, device=inp.device) for task_id in unique_tasks: task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0] task_tensor = inp[task_indices] task_out = self.out_proj(task_tensor, task_id=task_id) out[task_indices] = task_out else: out = self.out_proj(inp) return out if not self.return_residual else (out, x)