# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py # Commit id: abbc1311731867310635f9edc2a9ec18317c8c48 # Copyright (c) 2022, Tri Dao. # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py import importlib.util import logging import re from collections import OrderedDict from collections.abc import Sequence from functools import partial import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from einops import rearrange from transformers import PretrainedConfig from transformers.modeling_utils import PreTrainedModel from transformers.modeling_outputs import MaskedLMOutput,SequenceClassifierOutput from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead from transformers.models.bert.modeling_bert import ( BaseModelOutputWithPoolingAndCrossAttentions, BertForPreTrainingOutput, ) from typing import List, Optional, Tuple, Union from .xlm_padding import ( index_first_axis, index_first_axis_residual, pad_input, unpad_input, ) from .configuration_xlm_roberta import XLMRobertaFlashConfig from .block import Block from .embedding import XLMRobertaEmbeddings from .mha import MHA from .mlp import FusedMLP, Mlp from .stochastic_depth import StochasticDepth from .rotary import RotaryEmbedding try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None try: from flash_attn.ops.triton.layer_norm import layer_norm_fn except ImportError: layer_norm_fn = None try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError: CrossEntropyLoss = torch.nn.CrossEntropyLoss try: from tqdm.autonotebook import trange except ImportError: trange = None logger = logging.getLogger(__name__) def get_use_flash_attn(config: XLMRobertaFlashConfig): if not getattr(config, "use_flash_attn", False): return False if not torch.cuda.is_available(): return False if importlib.util.find_spec("flash_attn") is None: logger.warning( 'flash_attn is not installed. Using PyTorch native attention implementation.' ) return False return True def create_mixer_cls(config, cross_attn=False, return_residual=False): use_flash_attn = get_use_flash_attn(config) fused_bias_fc = getattr(config, "fused_bias_fc", False) rotary_kwargs = {} if config.position_embedding_type == "rotary": rotary_kwargs["rotary_emb_dim"] = getattr( config, "rotary_emb_dim", config.hidden_size / 12 ) rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0) rotary_kwargs["rotary_emb_scale_base"] = getattr( config, "rotary_emb_scale_base", None ) rotary_kwargs["rotary_emb_interleaved"] = getattr( config, "rotary_emb_interleaved", False ) mixer_cls = partial( MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn, dropout=config.attention_probs_dropout_prob, causal=False, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn, return_residual=return_residual, use_alibi=config.position_embedding_type == 'alibi', **rotary_kwargs, ) return mixer_cls def create_mlp_cls(config, layer_idx=None, return_residual=False): inner_dim = config.intermediate_size fused_mlp = getattr(config, "fused_mlp", False) if fused_mlp: assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], ( "fused_mlp only " "supports approximate gelu" ) if not fused_mlp: approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) mlp_cls = partial( Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate=approximate), return_residual=return_residual, ) else: if FusedMLP is None: raise ImportError("fused_dense is not installed") mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] mlp_cls = partial( FusedMLP, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual, ) return mlp_cls def create_block(config, layer_idx=None): last_layer_subset = getattr(config, "last_layer_subset", False) cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1 # TD [2022-12-19]: For cross attention (last layer), we actually want to return the # residual x_kv, not residual x. But it's annoying to change the API (and it only affects # one layer) so we just choose not to return residual in this case. return_residual = not cross_attn mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) block = Block( config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=False, resid_dropout1=config.hidden_dropout_prob, resid_dropout2=config.hidden_dropout_prob, fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False), return_residual=return_residual, ) return block # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 def _init_weights(module, initializer_range=0.02): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if module.padding_idx is not None: nn.init.zeros_(module.weight[module.padding_idx]) class XLMRobertaEncoder(nn.Module): def __init__(self, config: XLMRobertaFlashConfig): super().__init__() self.use_flash_attn = get_use_flash_attn(config) self.layers = nn.ModuleList( [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) self._grad_checkpointing = False @property def gradient_checkpointing(self): return self._grad_checkpointing @gradient_checkpointing.setter def gradient_checkpointing(self, value): self._grad_checkpointing = value def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): """If subset_mask is not None, we only want output for the subset of the sequence. This means that we only compute the last layer output for these tokens. subset_mask: (batch, seqlen), dtype=torch.bool """ if key_padding_mask is None or not self.use_flash_attn: mixer_kwargs = ( {"key_padding_mask": key_padding_mask.bool()} if key_padding_mask is not None else None ) for layer in self.layers: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if subset_mask is not None: hidden_states = hidden_states[subset_mask] else: batch, seqlen = hidden_states.shape[:2] hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( hidden_states, key_padding_mask ) mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch} if subset_mask is None: for layer in self.layers: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) hidden_states = pad_input(hidden_states, indices, batch, seqlen) else: for layer in self.layers[:-1]: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if key_padding_mask is not None: subset_idx = torch.nonzero( subset_mask[key_padding_mask], as_tuple=False ).flatten() subset_seqlens = (subset_mask & key_padding_mask).sum( dim=-1, dtype=torch.int32 ) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0), ) else: subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0), ) hidden_states_subset, hidden_states = index_first_axis_residual( hidden_states, subset_idx ) # It's ok to set max_seqlen_q to be much larger mixer_kwargs = { "x_kv": hidden_states, "cu_seqlens": subset_cu_seqlens, "max_seqlen": max_seqlen_in_batch, "cu_seqlens_k": cu_seqlens, "max_seqlen_k": max_seqlen_in_batch, } if self._grad_checkpointing: torch.utils.checkpoint.checkpoint( self.layers[-1], hidden_states_subset, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = self.layers[-1]( hidden_states_subset, mixer_kwargs=mixer_kwargs ) return hidden_states class XLMRobertaPooler(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, pool=True): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class XLMRobertaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) self.transform_act_fn = nn.GELU(approximate=approximate) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) if not self.fused_dropout_add_ln: hidden_states = self.layer_norm(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps, ) return hidden_states class XLMRobertaLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.transform = XLMRobertaPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class XLMRobertaPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = XLMRobertaLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class XLMRobertaPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = XLMRobertaFlashConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, XLMRobertaEncoder): module.gradient_checkpointing = value @classmethod def from_pretrained( cls, *args, **kwargs, ): if not 'torch_dtype' in kwargs: kwargs['torch_dtype'] = 'auto' return super().from_pretrained(*args, **kwargs) class XLMRobertaModel(XLMRobertaPreTrainedModel): def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True): super().__init__(config) self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if config.vocab_size % self.pad_vocab_size_multiple != 0: config.vocab_size += self.pad_vocab_size_multiple - ( config.vocab_size % self.pad_vocab_size_multiple ) self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") assert config.hidden_act in [ "gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh", ] self.embeddings = XLMRobertaEmbeddings( config.hidden_size, config.vocab_size, config.max_position_embeddings if config.position_embedding_type == 'absolute' else -1, config.type_vocab_size, padding_idx=config.pad_token_id, ) self.emb_drop = nn.Dropout(config.hidden_dropout_prob) self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder = XLMRobertaEncoder(config) self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None self.apply(partial(_init_weights, initializer_range=config.initializer_range)) @torch.inference_mode() def encode( self: 'XLMRobertaModel', sentences: Union[str, List[str]], batch_size: int = 32, show_progress_bar: Optional[bool] = None, output_value: str = 'sentence_embedding', convert_to_numpy: bool = True, convert_to_tensor: bool = False, device: Optional[torch.device] = None, normalize_embeddings: bool = False, truncate_dim: Optional[int] = None, **tokenizer_kwargs, ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]: """ Computes sentence embeddings Args: sentences(`str` or `List[str]`): Sentence or sentences to be encoded batch_size(`int`, *optional*, defaults to 32): Batch size for the computation show_progress_bar(`bool`, *optional*, defaults to None): Show a progress bar when encoding sentences. If set to None, progress bar is only shown when `logger.level == logging.INFO` or `logger.level == logging.DEBUG`. output_value(`str`, *optional*, defaults to 'sentence_embedding'): Default sentence_embedding, to get sentence embeddings. Can be set to token_embeddings to get wordpiece token embeddings. Set to None, to get all output values convert_to_numpy(`bool`, *optional*, defaults to True): If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors. convert_to_tensor(`bool`, *optional*, defaults to False): If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy device(`torch.device`, *optional*, defaults to None): Which torch.device to use for the computation normalize_embeddings(`bool`, *optional*, defaults to False): If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used. truncate_dim(`int`, *optional*, defaults to None): The dimension to truncate sentence embeddings to. `None` does no truncation. tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}): Keyword arguments for the tokenizer Returns: By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned. """ from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained( self.name_or_path, trust_remote_code=True ) is_training = self.training self.eval() if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) if convert_to_tensor: convert_to_numpy = False if output_value != 'sentence_embedding': convert_to_tensor = False convert_to_numpy = False input_was_string = False if isinstance(sentences, str) or not hasattr(sentences, '__len__'): sentences = [sentences] input_was_string = True if device is not None: self.to(device) permutation = np.argsort([-len(i) for i in sentences]) inverse_permutation = np.argsort(permutation) sentences = [sentences[idx] for idx in permutation] tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True) tokenizer_kwargs['max_length'] = tokenizer_kwargs.get( 'max_length', self.tokenizer.init_kwargs.get('model_max_length', 8192) ) tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True) all_embeddings = [] if trange is not None: range_iter = trange( 0, len(sentences), batch_size, desc="Encoding", disable=not show_progress_bar, ) else: range_iter = range(0, len(sentences), batch_size) for i in range_iter: encoded_input = self.tokenizer( sentences[i : i + batch_size], return_tensors='pt', **tokenizer_kwargs, ).to(self.device) token_embs = self.forward(**encoded_input)[0] # Accumulate in fp32 to avoid overflow token_embs = token_embs.float() if output_value == 'token_embeddings': raise NotImplementedError elif output_value is None: raise NotImplementedError else: if self.config.emb_pooler == 'cls': embeddings = self.cls_pooling( token_embs, encoded_input['attention_mask'] ) else: embeddings = self.mean_pooling( token_embs, encoded_input['attention_mask'] ) if normalize_embeddings: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) if convert_to_numpy: embeddings = embeddings.cpu() all_embeddings.extend(embeddings) all_embeddings = [all_embeddings[idx] for idx in inverse_permutation] truncate_dim = truncate_dim or self.config.truncate_dim if truncate_dim: all_embeddings = self.truncate_embeddings(all_embeddings, truncate_dim) if convert_to_tensor: all_embeddings = torch.stack(all_embeddings) elif convert_to_numpy: all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings]) if input_was_string: all_embeddings = all_embeddings[0] self.train(is_training) return all_embeddings def truncate_embeddings(self, embeddings, truncate_dim): if not self.config.matryoshka_dimensions: logger.warning( 'Matryoshka embeddings are not supported, so dimension truncation will not be performed.' ) return embeddings elif truncate_dim in self.config.matryoshka_dimensions: return [tensor[:truncate_dim] for tensor in embeddings] else: raise ValueError(f'The provided `truncate_dim` value of {truncate_dim} is not supported. ' f'Supported dimensions are {self.config.matryoshka_dimensions}.') def mean_pooling( self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor ): input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) def cls_pooling( self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor ): return token_embeddings[:,0] def forward( self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, masked_tokens_mask=None, return_dict=None, **kwargs, ): """If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining), we only want the output for the masked tokens. This means that we only compute the last layer output for these tokens. masked_tokens_mask: (batch, seqlen), dtype=torch.bool """ if kwargs: for key, value in kwargs.items(): if value is not None: logger.warning( 'Flash attention implementation does not support kwargs: %s', key, ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) hidden_states = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids ) # TD [2022-12:18]: Don't need to force residual in fp32 # BERT puts embedding LayerNorm before embedding dropout. if not self.fused_dropout_add_ln: hidden_states = self.emb_ln(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps ) hidden_states = self.emb_drop(hidden_states) if masked_tokens_mask is not None: batch_size, seqlen = input_ids.shape[:2] # We also need the first column for the CLS token first_col_mask = torch.zeros( batch_size, seqlen, dtype=torch.bool, device=input_ids.device ) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask else: subset_mask = None sequence_output = self.encoder( hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask ) if masked_tokens_mask is None: pooled_output = ( self.pooler(sequence_output) if self.pooler is not None else None ) else: # TD [2022-03-01]: the indexing here is very tricky. if attention_mask is not None: subset_idx = subset_mask[attention_mask] pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] sequence_output = sequence_output[ masked_tokens_mask[attention_mask][subset_idx] ] else: pool_input = sequence_output[first_col_mask[subset_mask]] sequence_output = sequence_output[masked_tokens_mask[subset_mask]] pooled_output = ( self.pooler(pool_input, pool=False) if self.pooler is not None else None ) if not return_dict: return sequence_output, pooled_output return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, ) class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaLMHead(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.roberta.embeddings.word_embeddings def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ( ((masked_lm_loss,) + output) if masked_lm_loss is not None else output ) return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # class XLMRobertaForPreTraining(XLMRobertaPreTrainedModel): # def __init__(self, config: XLMRobertaFlashConfig): # super().__init__(config) # # If dense_seq_output, we only need to pass the hidden states for the masked out tokens # # (around 15%) to the classifier heads. # self.dense_seq_output = getattr(config, "dense_seq_output", False) # # If last_layer_subset, we only need the compute the last layer for a subset of tokens # # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). # self.last_layer_subset = getattr(config, "last_layer_subset", False) # if self.last_layer_subset: # assert self.dense_seq_output, "last_layer_subset requires dense_seq_output" # use_xentropy = getattr(config, "use_xentropy", False) # if use_xentropy and CrossEntropyLoss is None: # raise ImportError("xentropy_cuda is not installed") # loss_cls = ( # nn.CrossEntropyLoss # if not use_xentropy # else partial(CrossEntropyLoss, inplace_backward=True) # ) # # self.xlm = XLMRobertaModel(config) # self.cls = XLMRobertaPreTrainingHeads(config) # self.mlm_loss = loss_cls(ignore_index=0) # self.nsp_loss = loss_cls(ignore_index=-1) # # # Initialize weights and apply final processing # self.apply(partial(_init_weights, initializer_range=config.initializer_range)) # self.tie_weights() # # def tie_weights(self): # self.cls.predictions.decoder.weight = self.xlm.embeddings.word_embeddings.weight # # def forward( # self, # input_ids, # position_ids=None, # token_type_ids=None, # attention_mask=None, # labels=None, # next_sentence_label=None, # ): # """ # If labels are provided, they must be 0 for masked out tokens (as specified in the attention # mask). # Outputs: # if `labels` and `next_sentence_label` are not `None`: # Outputs the total_loss which is the sum of the masked language modeling loss and the next # sentence classification loss. # if `labels` or `next_sentence_label` is `None`: # Outputs a tuple comprising # - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and # - the next sentence classification logits of shape [batch_size, 2]. # # """ # masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None # outputs = self.xlm( # input_ids, # position_ids=position_ids, # token_type_ids=token_type_ids, # attention_mask=attention_mask.bool() if attention_mask is not None else None, # masked_tokens_mask=masked_tokens_mask, # ) # sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output # if self.dense_seq_output and labels is not None: # masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() # if not self.last_layer_subset: # sequence_output = index_first_axis( # rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx # ) # prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) # # total_loss = None # if labels is not None and next_sentence_label is not None: # if ( # self.dense_seq_output and labels is not None # ): # prediction_scores are already flattened # masked_lm_loss = self.mlm_loss( # prediction_scores, labels.flatten()[masked_token_idx] # ) # else: # masked_lm_loss = self.mlm_loss( # rearrange(prediction_scores, "... v -> (...) v"), # rearrange(labels, "... -> (...)"), # ) # next_sentence_loss = self.nsp_loss( # rearrange(seq_relationship_score, "... t -> (...) t"), # rearrange(next_sentence_label, "... -> (...)"), # ) # total_loss = masked_lm_loss.float() + next_sentence_loss.float() # # return BertForPreTrainingOutput( # loss=total_loss, # prediction_logits=prediction_scores, # seq_relationship_logits=seq_relationship_score, # ) def remap_state_dict(state_dict, config: PretrainedConfig): """ Map the state_dict of a Huggingface BERT model to be flash_attn compatible. """ # LayerNorm def key_mapping_ln_gamma_beta(key): key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) return key state_dict = OrderedDict( (key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items() ) # Layers def key_mapping_layers(key): return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # LayerNorm def key_mapping_ln(key): key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key) key = re.sub( r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", r"bert.encoder.layers.\1.norm1.\2", key, ) key = re.sub( r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)", r"bert.encoder.layers.\1.norm2.\2", key, ) key = re.sub( r"^cls.predictions.transform.LayerNorm.(weight|bias)", r"cls.predictions.transform.layer_norm.\1", key, ) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub( r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)", r"bert.encoder.layers.\1.mlp.fc1.\2", key, ) key = re.sub( r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)", r"bert.encoder.layers.\1.mlp.fc2.\2", key, ) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention last_layer_subset = getattr(config, "last_layer_subset", False) for d in range(config.num_hidden_layers): Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight") Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight") Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight") bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias") bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias") bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias") if not (last_layer_subset and d == config.num_hidden_layers - 1): state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat( [bq, bk, bv], dim=0 ) else: state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat( [Wk, Wv], dim=0 ) state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat( [bk, bv], dim=0 ) def key_mapping_attn(key): return re.sub( r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)", r"bert.encoder.layers.\1.mixer.out_proj.\2", key, ) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) def key_mapping_decoder_bias(key): return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) state_dict = OrderedDict( (key_mapping_decoder_bias(k), v) for k, v in state_dict.items() ) # Word embedding pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] state_dict["bert.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) ) decoder_weight = state_dict["cls.predictions.decoder.weight"] state_dict["cls.predictions.decoder.weight"] = F.pad( decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) ) # If the vocab was padded, we want to set the decoder bias for those padded indices to be # strongly negative (i.e. the decoder shouldn't predict those indices). # TD [2022-05-09]: I don't think it affects the MLPerf training. decoder_bias = state_dict["cls.predictions.decoder.bias"] state_dict["cls.predictions.decoder.bias"] = F.pad( decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 ) return state_dict def inv_remap_state_dict(state_dict, config: PretrainedConfig): """ Map the state_dict of a flash_attn model to be Huggingface BERT compatible. This function is meant to be the inverse of remap_state_dict. """ # Word embedding pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] decoder_weight = state_dict["cls.predictions.decoder.weight"] decoder_bias = state_dict["cls.predictions.decoder.bias"] # unpad embeddings state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[ : config.orig_vocab_size, : ] state_dict["cls.predictions.decoder.weight"] = decoder_weight[ : config.orig_vocab_size, : ] state_dict["cls.predictions.decoder.bias"] = decoder_bias[ : config.orig_vocab_size ] for d in range(config.num_hidden_layers): last_layer_subset = getattr(config, "last_layer_subset", False) if not last_layer_subset or d != (config.num_hidden_layers - 1): Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight") Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias") state_dict[ f"bert.encoder.layers.{d}.attention.self.query.weight" ] = Wqkv_weights[: Wqkv_weights.shape[0] // 3, :] state_dict[ f"bert.encoder.layers.{d}.attention.self.key.weight" ] = Wqkv_weights[ Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, : ] state_dict[ f"bert.encoder.layers.{d}.attention.self.value.weight" ] = Wqkv_weights[2 * Wqkv_weights.shape[0] // 3 :, :] state_dict[ f"bert.encoder.layers.{d}.attention.self.query.bias" ] = Wqkv_biases[: Wqkv_biases.shape[0] // 3] state_dict[ f"bert.encoder.layers.{d}.attention.self.key.bias" ] = Wqkv_biases[Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3] state_dict[ f"bert.encoder.layers.{d}.attention.self.value.bias" ] = Wqkv_biases[2 * Wqkv_biases.shape[0] // 3 :] else: Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight") Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight") Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias") Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias") state_dict[ f"bert.encoder.layers.{d}.attention.self.query.weight" ] = Wq_weight state_dict[ f"bert.encoder.layers.{d}.attention.self.key.weight" ] = Wkv_weights[: Wkv_weights.shape[0] // 2, :] state_dict[ f"bert.encoder.layers.{d}.attention.self.value.weight" ] = Wkv_weights[Wkv_weights.shape[0] // 2 :, :] state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[ : Wkv_biases.shape[0] // 2 ] state_dict[ f"bert.encoder.layers.{d}.attention.self.value.bias" ] = Wkv_biases[Wkv_biases.shape[0] // 2 :] def inv_key_mapping_ln(key): key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key) key = re.sub( r"bert.encoder.layers.(\d+).norm1.(weight|bias)", r"bert.encoder.layers.\1.attention.output.LayerNorm.\2", key, ) key = re.sub( r"bert.encoder.layers.(\d+).norm2.(weight|bias)", r"bert.encoder.layers.\1.output.LayerNorm.\2", key, ) key = re.sub( r"cls.predictions.transform.layer_norm.(weight|bias)", r"cls.predictions.transform.LayerNorm.\1", key, ) return key def inv_key_mapping_ln_gamma_beta(key): key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key) key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key) return key def inv_key_mapping_layers(key): return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key) def inv_key_mapping_mlp(key): key = re.sub( r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)", r"bert.encoder.layer.\1.intermediate.dense.\2", key, ) key = re.sub( r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)", r"bert.encoder.layer.\1.output.dense.\2", key, ) return key def inv_key_mapping_attn(key): return re.sub( r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)", r"bert.encoder.layer.\1.attention.output.dense.\2", key, ) def inv_key_mapping_decoder_bias(key): return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key) state_dict = OrderedDict( (inv_key_mapping_ln(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_layers(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_mlp(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_attn(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items() ) return state_dict # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta class XLMRobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = linear_cls(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.classifier = XLMRobertaClassificationHead(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and ( labels.dtype == torch.long or labels.dtype == torch.int ): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )