|
import math |
|
import struct |
|
import inspect |
|
import time |
|
|
|
from .LMConfig import LMConfig |
|
from typing import Any, Optional, Tuple, List, Union |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
return self.weight * self._norm(x.float()).type_as(x) |
|
|
|
|
|
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6): |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
pos_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
return pos_cis |
|
|
|
|
|
def apply_rotary_emb(xq, xk, pos_cis): |
|
def unite_shape(pos_cis, x): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert pos_cis.shape == (x.shape[1], x.shape[-1]) |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return pos_cis.view(*shape) |
|
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
pos_cis = unite_shape(pos_cis, xq_) |
|
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3) |
|
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3) |
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
bs, slen, n_kv_heads, head_dim = x.shape |
|
if n_rep == 1: |
|
return x |
|
return ( |
|
x[:, :, :, None, :] |
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim) |
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) |
|
) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, args: LMConfig): |
|
super().__init__() |
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads |
|
assert args.n_heads % self.n_kv_heads == 0 |
|
self.n_local_heads = args.n_heads |
|
self.n_local_kv_heads = self.n_kv_heads |
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
self.head_dim = args.dim // args.n_heads |
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) |
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) |
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) |
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) |
|
self.attn_dropout = nn.Dropout(args.dropout) |
|
self.resid_dropout = nn.Dropout(args.dropout) |
|
self.dropout = args.dropout |
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn |
|
|
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf")) |
|
mask = torch.triu(mask, diagonal=1) |
|
self.register_buffer("mask", mask, persistent=False) |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
pos_cis: torch.Tensor, |
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache=False): |
|
bsz, seq_len, _ = x.shape |
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) |
|
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) |
|
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) |
|
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) |
|
|
|
xq, xk = apply_rotary_emb(xq, xk, pos_cis) |
|
|
|
if past_key_value is not None: |
|
xk = torch.cat([past_key_value[0], xk], dim=1) |
|
xv = torch.cat([past_key_value[1], xv], dim=1) |
|
past_kv = (xk, xv) if use_cache else None |
|
|
|
xq, xk, xv = ( |
|
xq.transpose(1, 2), |
|
repeat_kv(xk, self.n_rep).transpose(1, 2), |
|
repeat_kv(xv, self.n_rep).transpose(1, 2) |
|
) |
|
if self.flash and seq_len != 1: |
|
dropout_p = self.dropout if self.training else 0.0 |
|
output = F.scaled_dot_product_attention( |
|
xq, xk, xv, |
|
attn_mask=None, |
|
dropout_p=dropout_p, |
|
is_causal=True |
|
) |
|
else: |
|
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim) |
|
scores += self.mask[:, :, :seq_len, :seq_len] |
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
scores = self.attn_dropout(scores) |
|
output = scores @ xv |
|
|
|
output = output.transpose(1, 2).reshape(bsz, seq_len, -1) |
|
output = self.resid_dropout(self.wo(output)) |
|
return output, past_kv |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, config: LMConfig): |
|
super().__init__() |
|
if config.hidden_dim is None: |
|
hidden_dim = 4 * config.dim |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of) |
|
self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False) |
|
self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False) |
|
self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
def forward(self, x): |
|
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) |
|
|
|
|
|
class MoEGate(nn.Module): |
|
def __init__(self, config: LMConfig): |
|
super().__init__() |
|
self.config = config |
|
self.top_k = config.num_experts_per_tok |
|
self.n_routed_experts = config.n_routed_experts |
|
|
|
self.scoring_func = config.scoring_func |
|
self.alpha = config.aux_loss_alpha |
|
self.seq_aux = config.seq_aux |
|
|
|
self.norm_topk_prob = config.norm_topk_prob |
|
self.gating_dim = config.dim |
|
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
import torch.nn.init as init |
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
def forward(self, hidden_states): |
|
bsz, seq_len, h = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, h) |
|
logits = F.linear(hidden_states, self.weight, None) |
|
if self.scoring_func == 'softmax': |
|
scores = logits.softmax(dim=-1) |
|
else: |
|
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') |
|
|
|
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) |
|
|
|
if self.top_k > 1 and self.norm_topk_prob: |
|
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 |
|
topk_weight = topk_weight / denominator |
|
|
|
if self.training and self.alpha > 0.0: |
|
scores_for_aux = scores |
|
aux_topk = self.top_k |
|
topk_idx_for_aux_loss = topk_idx.view(bsz, -1) |
|
if self.seq_aux: |
|
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) |
|
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) |
|
ce.scatter_add_(1, topk_idx_for_aux_loss, |
|
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_( |
|
seq_len * aux_topk / self.n_routed_experts) |
|
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha |
|
else: |
|
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) |
|
ce = mask_ce.float().mean(0) |
|
Pi = scores_for_aux.mean(0) |
|
fi = ce * self.n_routed_experts |
|
aux_loss = (Pi * fi).sum() * self.alpha |
|
else: |
|
aux_loss = 0 |
|
return topk_idx, topk_weight, aux_loss |
|
|
|
|
|
class MOEFeedForward(nn.Module): |
|
def __init__(self, config: LMConfig): |
|
super().__init__() |
|
self.config = config |
|
self.experts = nn.ModuleList([ |
|
FeedForward(config) |
|
for _ in range(config.n_routed_experts) |
|
]) |
|
self.gate = MoEGate(config) |
|
if config.n_shared_experts is not None: |
|
self.shared_experts = FeedForward(config) |
|
|
|
def forward(self, x): |
|
identity = x |
|
orig_shape = x.shape |
|
bsz, seq_len, _ = x.shape |
|
|
|
topk_idx, topk_weight, aux_loss = self.gate(x) |
|
x = x.view(-1, x.shape[-1]) |
|
flat_topk_idx = topk_idx.view(-1) |
|
if self.training: |
|
|
|
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0) |
|
y = torch.empty_like(x, dtype=torch.float16) |
|
for i, expert in enumerate(self.experts): |
|
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) |
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) |
|
y = y.view(*orig_shape) |
|
else: |
|
|
|
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) |
|
if self.config.n_shared_experts is not None: |
|
y = y + self.shared_experts(identity) |
|
self.aux_loss = aux_loss |
|
return y |
|
|
|
@torch.no_grad() |
|
def moe_infer(self, x, flat_expert_indices, flat_expert_weights): |
|
expert_cache = torch.zeros_like(x) |
|
idxs = flat_expert_indices.argsort() |
|
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) |
|
token_idxs = idxs // self.config.num_experts_per_tok |
|
|
|
|
|
|
|
for i, end_idx in enumerate(tokens_per_expert): |
|
start_idx = 0 if i == 0 else tokens_per_expert[i - 1] |
|
if start_idx == end_idx: |
|
continue |
|
expert = self.experts[i] |
|
exp_token_idx = token_idxs[start_idx:end_idx] |
|
expert_tokens = x[exp_token_idx] |
|
expert_out = expert(expert_tokens).to(expert_cache.dtype) |
|
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) |
|
|
|
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out) |
|
|
|
return expert_cache |
|
|
|
|
|
class MiniMindBlock(nn.Module): |
|
def __init__(self, layer_id: int, config: LMConfig): |
|
super().__init__() |
|
self.n_heads = config.n_heads |
|
self.dim = config.dim |
|
self.head_dim = config.dim // config.n_heads |
|
self.attention = Attention(config) |
|
|
|
self.layer_id = layer_id |
|
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) |
|
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config) |
|
|
|
def forward(self, x, pos_cis, past_key_value=None, use_cache=False): |
|
h_attn, past_kv = self.attention( |
|
self.attention_norm(x), |
|
pos_cis, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache |
|
) |
|
h = x + h_attn |
|
out = h + self.feed_forward(self.ffn_norm(h)) |
|
return out, past_kv |
|
|
|
|
|
class MiniMindLM(PreTrainedModel): |
|
config_class = LMConfig |
|
|
|
def __init__(self, params: LMConfig = None): |
|
self.params = params or LMConfig() |
|
super().__init__(self.params) |
|
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers |
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) |
|
self.dropout = nn.Dropout(params.dropout) |
|
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)]) |
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False) |
|
self.tok_embeddings.weight = self.output.weight |
|
self.register_buffer("pos_cis", |
|
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta), |
|
persistent=False) |
|
self.OUT = CausalLMOutputWithPast() |
|
|
|
def forward(self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, |
|
use_cache: bool = False, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**args): |
|
past_key_values = past_key_values or [None] * len(self.layers) |
|
start_pos = args.get('start_pos', 0) |
|
h = self.dropout(self.tok_embeddings(input_ids)) |
|
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)] |
|
past_kvs = [] |
|
for l, layer in enumerate(self.layers): |
|
h, past_kv = layer( |
|
h, pos_cis, |
|
past_key_value=past_key_values[l], |
|
use_cache=use_cache |
|
) |
|
past_kvs.append(past_kv) |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.output(self.norm(h)[:, slice_indices, :]) |
|
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward)) |
|
self.OUT.__setitem__('last_hidden_state', h) |
|
self.OUT.__setitem__('logits', logits) |
|
self.OUT.__setitem__('aux_loss', aux_loss) |
|
self.OUT.__setitem__('past_key_values', past_kvs) |
|
return self.OUT |
|
|
|
@torch.inference_mode() |
|
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90, |
|
stream=False, rp=1., use_cache=True, pad_token_id=0, num_return_sequences=1, **args): |
|
|
|
if stream: |
|
return self._stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args) |
|
|
|
|
|
generated = [] |
|
for i in range(input_ids.size(0)): |
|
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0) |
|
for _ in range(num_return_sequences): |
|
out = self._stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args) |
|
tokens_list = [tokens[:, -1:] for tokens in out] |
|
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad |
|
full_sequence = torch.cat([non_pad, gen], dim=-1) |
|
generated.append(full_sequence) |
|
|
|
max_length = max(seq.size(1) for seq in generated) |
|
generated = [ |
|
torch.cat( |
|
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)], |
|
dim=-1) |
|
for seq in generated |
|
] |
|
output = torch.cat(generated, dim=0) |
|
res = output.view(input_ids.size(0) * num_return_sequences, -1) |
|
return res |
|
|
|
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args): |
|
start, first_seq, past_kvs = input_ids.shape[1], True, None |
|
while input_ids.shape[1] < max_new_tokens - 1: |
|
if first_seq or not use_cache: |
|
out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache, **args), False |
|
else: |
|
out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache, |
|
start_pos=input_ids.shape[1] - 1, **args) |
|
logits, past_kvs = out.logits[:, -1, :], out.past_key_values |
|
logits[:, list(set(input_ids.tolist()[0]))] /= rp |
|
logits /= (temperature + 1e-9) |
|
if top_p is not None and top_p < 1.0: |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) |
|
sorted_probs = F.softmax(sorted_logits, dim=-1) |
|
cumulative_probs = torch.cumsum(sorted_probs, dim=-1) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() |
|
sorted_indices_to_remove[:, 0] = False |
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) |
|
logits[indices_to_remove] = -float('Inf') |
|
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) |
|
input_ids = torch.cat((input_ids, input_ids_next), dim=1) |
|
yield input_ids[:, start:] |
|
if input_ids_next.item() == eos_token_id: |
|
break |
|
|