File size: 1,219 Bytes
9388016 d7f06f3 e8d1314 d7f06f3 9388016 3901994 d7f06f3 e8d1314 b364162 6f6b1ce b364162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
license: mit
datasets:
- daily_dialog
- multi_woz_v22
language:
- en
---
### Useless ChitChat Language Model
Basic Dialog Model from DialoGPT-small.
Finetuned on Dialog dataset. (Daily Dialog, MultiWoz)
### How to use
Use it as any torch python Language Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("gpt")
model = AutoModelForCausalLM.from_pretrained("jinymusim/dialogmodel")
# Take user Input
user_utterance = input('USER> ')
user_utterance = user_utterance.strip()
tokenized_context = tokenizer.encode(user_utterance + tokenizer.eos_token, return_tensors='pt')
# generated a response, limit max_lenght to resonable size
out_response = model.generate(tokenized_context,
max_length=100,
num_beams=2,
no_repeat_ngram_size=2,
early_stopping=True,
pad_token_id=self.tokenizer.eos_token_id)
# Truncate User Input
decoded_response = self.tokenizer.decode(out_response[0], skip_special_tokens=True)[len(user_utterance):]
print(f'SYSTEM> {decoded_response}')
``` |