--- license: mit datasets: - daily_dialog language: - en --- Basic Dialog Model from DialoGPT-small. Finetuned on Daily Dialog dataset. ### How to use Use it as any torch python Language Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("gpt") model = AutoModelForCausalLM.from_pretrained("jinymusim/dialogmodel") # Take user Input user_utterance = input('USER> ') user_utterance = user_utterance.strip() tokenized_context = tokenizer.encode(user_utterance + tokenizer.eos_token, return_tensors='pt') # generated a response, limit max_lenght to resonable size out_response = model.generate(tokenized_context, max_length=30, num_beams=2, no_repeat_ngram_size=2, early_stopping=True, pad_token_id=self.tokenizer.eos_token_id) # Truncate User Input decoded_response = self.tokenizer.decode(out_response[0], skip_special_tokens=True)[len(user_utterance):] print(f'SYSTEM> {decoded_response}') ```